Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: Replace outdated df append #544

Merged
merged 7 commits into from
Jun 28, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion workflow/scripts/collect_lineage_calls.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@ def collect_calls(sm_input, sm_output, states, lineage, number, length):
]

# bring them together
call = pangolin_calls.append(call)
call = pd.concat([pangolin_calls, call])

call.to_csv(sm_output, sep="\t", index=False)

Expand Down
2 changes: 1 addition & 1 deletion workflow/scripts/evaluate-strain-call-error.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,7 @@ def eval_error(paths, sm_output, max_reads, prefix, separator, percentage, load_

df = df.merge(org_mix_df, how="outer").fillna(0)

results_df = results_df.append(df)
results_df = pd.concat([results_df, df])

for sample in results_df["mix"].unique():
sample_rmse = rmse(
Expand Down
4 changes: 3 additions & 1 deletion workflow/scripts/extract-strains-from-gisaid-provision.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,9 @@ def extract_strains_from_provision(
chunks = pd.read_json(path_to_provision, lines=True, chunksize=9000)
for i, chunk in enumerate(chunks):
print(f"Parsing chunk {i}", file=sys.stderr)
provision = provision.append(select_oldest_strains(chunk), ignore_index=True)
provision = pd.concat(
[provision, select_oldest_strains(chunk)], ignore_index=True
)
provision = select_oldest_strains(provision)

# save strain genomes
Expand Down
41 changes: 28 additions & 13 deletions workflow/scripts/generate-lineage-variant-table.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,21 +75,36 @@ def rename_enumeration(list_length):
lineages = record.info["LINEAGES"]
for signature in signatures:
# generate df with all signatures + VAF and Prob_not_present from calculation
variants_df = variants_df.append(
{
"Mutations": signature,
"Frequency": vaf,
"ReadDepth": dp,
"Prob_not_present": prob_not_present,
},
variants_df = pd.concat(
[
variants_df,
pd.DataFrame(
{
"Frequency": vaf,
"Mutations": signature,
"Prob_not_present": prob_not_present,
"ReadDepth": dp,
},
index=[0],
),
],
ignore_index=True,
)
# generate df with lineage matrix for all signatures
lineage_df = lineage_df.append(
{
"Mutations": signature,
**{lineage.replace(".", " "): "x" for lineage in lineages},
},

lineage_df = pd.concat(
alethomas marked this conversation as resolved.
Show resolved Hide resolved
[
lineage_df,
pd.DataFrame(
{
"Mutations": [signature],
**{
lineage.replace(".", " "): "x"
for lineage in lineages
},
},
index=[0],
),
],
ignore_index=True,
)

Expand Down
2 changes: 1 addition & 1 deletion workflow/scripts/generate-overview-table.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@ def is_patient_report():
columns=[eukaryota, bacteria, viruses, sars_cov2, unclassified]
).fillna(0)
kraken_results["sample"] = sample
species_columns = species_columns.append(kraken_results, ignore_index=True)
species_columns = pd.concat([species_columns, kraken_results], ignore_index=True)

data = data.join(species_columns.set_index("sample"))

Expand Down
2 changes: 1 addition & 1 deletion workflow/scripts/plot-all-coverage.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ def plot_coverage(sm_input, sm_output, min_coverage):

sample_df["Sample"] = sample_df["#CHROM"].apply(lambda x: str(x).split(".")[0])

coverage = coverage.append(sample_df, ignore_index=True)
coverage = pd.concat([coverage, sample_df], ignore_index=True)

coverage["# Coverage"] = coverage.Coverage.apply(
lambda x: f"< {min_coverage}"
Expand Down
52 changes: 33 additions & 19 deletions workflow/scripts/plot-assembly-comparison.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,29 +18,43 @@ def register_lengths(sample, file_list, state, amplicon_state, data):
for file, assembler in zip(file_list, snakemake.params.assembler):
if state in ("initial", "scaffolded"):
with pysam.FastxFile(file) as infile:
data = data.append(
{
"Sample": sample,
"Assembler": assembler,
"Amplicon": amplicon_state,
"length (bp)": max(len(contig.sequence) for contig in infile),
"State": state,
},
data = pd.concat(
[
data,
pd.DataFrame(
{
"Sample": sample,
"Assembler": assembler,
"Amplicon": amplicon_state,
"length (bp)": max(
len(contig.sequence) for contig in infile
),
"State": state,
},
index=[0],
),
],
ignore_index=True,
)
else:
quastDf = pd.read_csv(file, sep="\t")
data = data.append(
{
"Sample": sample,
"Assembler": assembler,
"Amplicon": amplicon_state,
"length (bp)": quastDf.loc[0, "N50"],
"State": "N50",
"Genome fraction (%)": quastDf.loc[0, "Genome fraction (%)"]
if "Genome fraction (%)" in quastDf.columns
else float("nan"),
},
data = pd.concat(
[
data,
pd.DataFrame(
{
"Sample": sample,
"Assembler": assembler,
"Amplicon": amplicon_state,
"length (bp)": quastDf.loc[0, "N50"],
"State": "N50",
"Genome fraction (%)": quastDf.loc[0, "Genome fraction (%)"]
if "Genome fraction (%)" in quastDf.columns
else float("nan"),
},
index=[0],
),
],
ignore_index=True,
)
return data
Expand Down
2 changes: 1 addition & 1 deletion workflow/scripts/plot-dependency-of-pangolin-call.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ def plot_dependency_of_pangolin_call(sm_input, sm_output):
pangolin_output["mixture_content"] = input.split(MIXTURE_PREFIX, 1)[-1].split(
"."
)[0]
all_sampes = all_sampes.append(pangolin_output, ignore_index=True)
all_sampes = pd.concat([all_sampes, pangolin_output], ignore_index=True)

all_sampes["mixture_content"] = all_sampes["mixture_content"].str.replace("-", ".")

Expand Down
2 changes: 1 addition & 1 deletion workflow/scripts/plot-pangolin-conflict.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ def plot_pangolin_conflict(sm_input, sm_output):
pangolin_output = pd.read_csv(input)
pangolin_output["true_lineage"] = true_lineage
pangolin_output["true_lineage_percent"] = percent
all_sampes = all_sampes.append(pangolin_output, ignore_index=True)
all_sampes = pd.concat([all_sampes, pangolin_output], ignore_index=True)

all_sampes["correct_lineage_assignment"] = (
all_sampes["lineage"] == all_sampes["true_lineage"]
Expand Down
4 changes: 2 additions & 2 deletions workflow/scripts/plot-primer-clipping.py
Original file line number Diff line number Diff line change
Expand Up @@ -147,13 +147,13 @@ def plot_classes(counters):
counts_before = count_intervals(file)
counts_before["sample"] = sample
counts_before["state"] = "before"
all_df = all_df.append(counts_before, ignore_index=True)
all_df = pd.concat([all_df, counts_before], ignore_index=True)

for sample, file in iter_with_samples(snakemake.input.clipped):
counts_after = count_intervals(file)
counts_after["sample"] = sample
counts_after["state"] = "after"
all_df = all_df.append(counts_after, ignore_index=True)
all_df = pd.concat([all_df, counts_after], ignore_index=True)

bars, text = plot_classes(all_df)

Expand Down