Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(aiplatform): add initial Imagen code sample and test #9422

Merged
merged 11 commits into from
Aug 2, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
105 changes: 105 additions & 0 deletions aiplatform/src/main/java/aiplatform/imagen/GenerateImageSample.java
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
/*
* Copyright 2024 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package aiplatform.imagen;

// [START generativeaionvertexai_imagen_generate_image]

import com.google.api.gax.rpc.ApiException;
import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.gson.Gson;
import com.google.protobuf.InvalidProtocolBufferException;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.util.Base64;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;

public class GenerateImageSample {

public static void main(String[] args) throws IOException {
// TODO(developer): Replace these variables before running the sample.
String projectId = "my-project-id";
String location = "us-central1";
String prompt = ""; // The text prompt describing what you want to see.

generateImage(projectId, location, prompt);
}

irataxy marked this conversation as resolved.
Show resolved Hide resolved
// Generate an image using a text prompt using an Imagen model
public static PredictResponse generateImage(String projectId, String location, String prompt)
throws ApiException, IOException {
final String endpoint = String.format("%s-aiplatform.googleapis.com:443", location);
PredictionServiceSettings predictionServiceSettings =
PredictionServiceSettings.newBuilder().setEndpoint(endpoint).build();

// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests.
try (PredictionServiceClient predictionServiceClient =
PredictionServiceClient.create(predictionServiceSettings)) {

final EndpointName endpointName =
EndpointName.ofProjectLocationPublisherModelName(
projectId, location, "google", "imagen-3.0-generate-001");

Map<String, Object> instancesMap = new HashMap<>();
instancesMap.put("prompt", prompt);
Value instances = mapToValue(instancesMap);

Map<String, Object> paramsMap = new HashMap<>();
paramsMap.put("sampleCount", 1);
// You can't use a seed value and watermark at the same time.
// paramsMap.put("seed", 100);
// paramsMap.put("addWatermark", true);
paramsMap.put("aspectRatio", "1:1");
paramsMap.put("safetyFilterLevel", "block_some");
paramsMap.put("personGeneration", "allow_adult");
Value parameters = mapToValue(paramsMap);

PredictResponse predictResponse =
predictionServiceClient.predict(
endpointName, Collections.singletonList(instances), parameters);

for (Value prediction : predictResponse.getPredictionsList()) {
Map<String, Value> fieldsMap = prediction.getStructValue().getFieldsMap();
if (fieldsMap.containsKey("bytesBase64Encoded")) {
String bytesBase64Encoded = fieldsMap.get("bytesBase64Encoded").getStringValue();
Path tmpPath = Files.createTempFile("imagen-", ".png");
Files.write(tmpPath, Base64.getDecoder().decode(bytesBase64Encoded));
System.out.format("Image file written to: %s\n", tmpPath.toUri());
}
}
return predictResponse;
}
}

private static Value mapToValue(Map<String, Object> map) throws InvalidProtocolBufferException {
Gson gson = new Gson();
String json = gson.toJson(map);
Value.Builder builder = Value.newBuilder();
JsonFormat.parser().merge(json, builder);
return builder.build();
}
}

// [END generativeaionvertexai_imagen_generate_image]
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
/*
* Copyright 2024 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package aiplatform.imagen;

import static com.google.common.truth.Truth.assertThat;
import static junit.framework.TestCase.assertNotNull;

import com.google.cloud.aiplatform.v1.PredictResponse;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.PrintStream;
import org.junit.After;
import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runners.JUnit4;

@RunWith(JUnit4.class)
public class GenerateImageSampleTest {

private static final String PROJECT = System.getenv("GOOGLE_CLOUD_PROJECT");
private static final String PROMPT = "a dog reading a newspaper";
private ByteArrayOutputStream bout;
private PrintStream out;
private PrintStream originalPrintStream;

private static void requireEnvVar(String varName) {
String errorMessage =
String.format("Environment variable '%s' is required to perform these tests.", varName);
assertNotNull(errorMessage, System.getenv(varName));
}

@BeforeClass
public static void checkRequirements() {
requireEnvVar("GOOGLE_APPLICATION_CREDENTIALS");
requireEnvVar("GOOGLE_CLOUD_PROJECT");
}

@Before
public void setUp() {
bout = new ByteArrayOutputStream();
out = new PrintStream(bout);
originalPrintStream = System.out;
System.setOut(out);
}

@After
public void tearDown() {
System.out.flush();
System.setOut(originalPrintStream);
}

@Test
public void testGenerateImageSample() throws IOException {
PredictResponse response = GenerateImageSample.generateImage(PROJECT, "us-central1", PROMPT);
assertThat(response).isNotNull();
}
}