Skip to content

Commit

Permalink
Dikin, Vaidya, John walk (#88)
Browse files Browse the repository at this point in the history
* implement dikin walk

* implement john walk

* implement vaidya walk

* include random walk

* add c++ wrappers for the ellipsoid random walks

* update R interface for sampling and parameterized ellipsoid walks

* update Rd files and roxygen comments

* implement PR comments

* use constructors in dikin,vaidya and john walks

* improve implementations

* improve computation of inner ball for H-polytopes

* improve inner ball computation and improve tests

* update termination criterions in rounding methods

* update Rd file of Birkhoff R generator

* improve univariate psrf implemetations

* fix c++ tests

* update parameters in rounding and minor improvements

* fix gcc tests and improve birkhoff generator Rd file

* fix c++ tests

* update citations
  • Loading branch information
AlexManochis authored Sep 18, 2020
1 parent 375fa1f commit 0fad1ce
Show file tree
Hide file tree
Showing 19 changed files with 1,005 additions and 25 deletions.
23 changes: 16 additions & 7 deletions R-proj/R/RcppExports.R
Original file line number Diff line number Diff line change
Expand Up @@ -168,7 +168,7 @@ geweke <- function(samples, frac_first = NULL, frac_last = NULL) {
#'
#' # compute an inscribed ball of the 3-dimensional unit cube in V-representation
#' P = gen_cube(3, 'V')
#' ball_vec = inner_ball(P)
#' ball_vec = inner_ball(P, lpsolve = TRUE)
#' @export
inner_ball <- function(P, lpsolve = NULL) {
.Call(`_volesti_inner_ball`, P, lpsolve)
Expand Down Expand Up @@ -276,12 +276,12 @@ rounding <- function(P, method = NULL, seed = NULL) {
#' @param n The number of points that the function is going to sample from the convex polytope.
#' @param random_walk Optional. A list that declares the random walk and some related parameters as follows:
#' \itemize{
#' \item{\code{walk} }{ A string to declare the random walk: i) \code{'CDHR'} for Coordinate Directions Hit-and-Run, ii) \code{'RDHR'} for Random Directions Hit-and-Run, iii) \code{'BaW'} for Ball Walk, iv) \code{'BiW'} for Billiard walk, v) \code{'BCDHR'} boundary sampling by keeping the extreme points of CDHR or vi) \code{'BRDHR'} boundary sampling by keeping the extreme points of RDHR. The default walk is \code{'BiW'} for the uniform distribution or \code{'CDHR'} for the Gaussian distribution.}
#' \item{\code{walk} }{ A string to declare the random walk: i) \code{'CDHR'} for Coordinate Directions Hit-and-Run, ii) \code{'RDHR'} for Random Directions Hit-and-Run, iii) \code{'BaW'} for Ball Walk, iv) \code{'BiW'} for Billiard walk, v) \code{'dikin'} for dikin walk, vi) \code{'vaidya'} for vaidya walk, vii) \code{'john'} for john walk, viii) \code{'BCDHR'} boundary sampling by keeping the extreme points of CDHR or ix) \code{'BRDHR'} boundary sampling by keeping the extreme points of RDHR. The default walk is \code{'aBiW'} for the uniform distribution or \code{'CDHR'} for the Gaussian distribution and H-polytopes and \code{'BiW'} or \code{'RDHR'} for the same distributions and V-polytopes and zonotopes.}
#' \item{\code{walk_length} }{ The number of the steps per generated point for the random walk. The default value is \eqn{1}.}
#' \item{\code{nburns} }{ The number of points to burn before start sampling. The default value is \eqn{1}.}
#' \item{\code{starting_point} }{ A \eqn{d}-dimensional numerical vector that declares a starting point in the interior of the polytope for the random walk. The default choice is the center of the ball as that one computed by the function \code{inner_ball()}.}
#' \item{\code{BaW_rad} }{ The radius for the ball walk.}
#' \item{\code{L} }{ The maximum length of the billiard trajectory.}
#' \item{\code{L} }{ The maximum length of the billiard trajectory or the radius for the step of dikin, vaidya or john walk.}
#' }
#' @param distribution Optional. A list that declares the target density and some related parameters as follows:
#' \itemize{
Expand All @@ -291,6 +291,15 @@ rounding <- function(P, method = NULL, seed = NULL) {
#' }
#' @param seed Optional. A fixed seed for the number generator.
#'
#' @references \cite{Robert L. Smith,
#' \dQuote{Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed Over Bounded Regions,} \emph{Operations Research,} 1984.},
#'
#' @references \cite{B.T. Polyak, E.N. Gryazina,
#' \dQuote{Billiard walk - a new sampling algorithm for control and optimization,} \emph{IFAC Proceedings Volumes,} 2014.},
#'
#' @references \cite{Y. Chen, R. Dwivedi, M. J. Wainwright and B. Yu,
#' \dQuote{Vaidya walk: A sampling algorithm based on the volumetric barrier,} \emph{55th Annual Allerton Conference on Communication, Control, and Computing,} 2017.}
#'
#' @return A \eqn{d\times n} matrix that contains, column-wise, the sampled points from the convex polytope P.
#' @examples
#' # uniform distribution from the 3d unit cube in H-representation using ball walk
Expand Down Expand Up @@ -377,12 +386,12 @@ loadSdpaFormatFile <- function(inputFile = NULL) {
#' @return The approximation of the volume of a convex polytope.
#' @examples
#'
#' # calling SOB algorithm for a H-polytope (3d unit simplex)
#' HP = gen_cube(3,'H')
#' # calling SOB algorithm for a H-polytope (5d unit simplex)
#' HP = gen_cube(5,'H')
#' vol = volume(HP)
#'
#' # calling CG algorithm for a V-polytope (2d simplex)
#' VP = gen_simplex(2,'V')
#' # calling CG algorithm for a V-polytope (3d simplex)
#' VP = gen_simplex(3,'V')
#' vol = volume(VP, settings = list("algorithm" = "CG"))
#'
#' # calling CG algorithm for a 2-dimensional zonotope defined as the Minkowski sum of 4 segments
Expand Down
4 changes: 2 additions & 2 deletions R-proj/man/inner_ball.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

14 changes: 12 additions & 2 deletions R-proj/man/sample_points.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion R-proj/man/volume.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

82 changes: 73 additions & 9 deletions R-proj/src/sample_points.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,8 @@

//Contributed and/or modified by Apostolos Chalkis, as part of Google Summer of Code 2018 and 2019 program.

// Contributed and/or modified by Alexandros Manochis, as part of Google Summer of Code 2020 program.

#include <Rcpp.h>
#include <RcppEigen.h>
#include <chrono>
Expand All @@ -19,7 +21,9 @@
#include "volume/volume_cooling_gaussians.hpp"
#include "sampling/sampling.hpp"

enum random_walks {ball_walk, rdhr, cdhr, billiard, accelarated_billiard, brdhr, bcdhr};

enum random_walks {ball_walk, rdhr, cdhr, billiard, accelarated_billiard,
dikin_walk, vaidya_walk, john_walk, brdhr, bcdhr};

template <typename Polytope, typename RNGType, typename PointList, typename NT, typename Point>
void sample_from_polytope(Polytope &P, int type, RNGType &rng, PointList &randPoints,
Expand Down Expand Up @@ -56,6 +60,33 @@ void sample_from_polytope(Polytope &P, int type, RNGType &rng, PointList &randPo
StartingPoint, nburns);
}
break;
case vaidya_walk:
if (set_L) {
VaidyaWalk WalkType(L);
uniform_sampling(randPoints, P, rng, WalkType, walkL, numpoints, StartingPoint, nburns);
} else {
uniform_sampling<VaidyaWalk>(randPoints, P, rng, walkL, numpoints,
StartingPoint, nburns);
}
break;
case dikin_walk:
if (set_L) {
DikinWalk WalkType(L);
uniform_sampling(randPoints, P, rng, WalkType, walkL, numpoints, StartingPoint, nburns);
} else {
uniform_sampling<DikinWalk>(randPoints, P, rng, walkL, numpoints,
StartingPoint, nburns);
}
break;
case john_walk:
if (set_L) {
JohnWalk WalkType(L);
uniform_sampling(randPoints, P, rng, WalkType, walkL, numpoints, StartingPoint, nburns);
} else {
uniform_sampling<JohnWalk>(randPoints, P, rng, walkL, numpoints,
StartingPoint, nburns);
}
break;
case billiard:
if(set_L) {
BilliardWalk WalkType(L);
Expand Down Expand Up @@ -94,7 +125,9 @@ void sample_from_polytope(Polytope &P, int type, RNGType &rng, PointList &randPo
StartingPoint, nburns);
}
}
break;
break;
default:
throw Rcpp::exception("Unknown random walk!");
}
}

Expand All @@ -106,12 +139,12 @@ void sample_from_polytope(Polytope &P, int type, RNGType &rng, PointList &randPo
//' @param n The number of points that the function is going to sample from the convex polytope.
//' @param random_walk Optional. A list that declares the random walk and some related parameters as follows:
//' \itemize{
//' \item{\code{walk} }{ A string to declare the random walk: i) \code{'CDHR'} for Coordinate Directions Hit-and-Run, ii) \code{'RDHR'} for Random Directions Hit-and-Run, iii) \code{'BaW'} for Ball Walk, iv) \code{'BiW'} for Billiard walk, v) \code{'BCDHR'} boundary sampling by keeping the extreme points of CDHR or vi) \code{'BRDHR'} boundary sampling by keeping the extreme points of RDHR. The default walk is \code{'BiW'} for the uniform distribution or \code{'CDHR'} for the Gaussian distribution.}
//' \item{\code{walk} }{ A string to declare the random walk: i) \code{'CDHR'} for Coordinate Directions Hit-and-Run, ii) \code{'RDHR'} for Random Directions Hit-and-Run, iii) \code{'BaW'} for Ball Walk, iv) \code{'BiW'} for Billiard walk, v) \code{'dikin'} for dikin walk, vi) \code{'vaidya'} for vaidya walk, vii) \code{'john'} for john walk, viii) \code{'BCDHR'} boundary sampling by keeping the extreme points of CDHR or ix) \code{'BRDHR'} boundary sampling by keeping the extreme points of RDHR. The default walk is \code{'aBiW'} for the uniform distribution or \code{'CDHR'} for the Gaussian distribution and H-polytopes and \code{'BiW'} or \code{'RDHR'} for the same distributions and V-polytopes and zonotopes.}
//' \item{\code{walk_length} }{ The number of the steps per generated point for the random walk. The default value is \eqn{1}.}
//' \item{\code{nburns} }{ The number of points to burn before start sampling. The default value is \eqn{1}.}
//' \item{\code{starting_point} }{ A \eqn{d}-dimensional numerical vector that declares a starting point in the interior of the polytope for the random walk. The default choice is the center of the ball as that one computed by the function \code{inner_ball()}.}
//' \item{\code{BaW_rad} }{ The radius for the ball walk.}
//' \item{\code{L} }{ The maximum length of the billiard trajectory.}
//' \item{\code{L} }{ The maximum length of the billiard trajectory or the radius for the step of dikin, vaidya or john walk.}
//' }
//' @param distribution Optional. A list that declares the target density and some related parameters as follows:
//' \itemize{
Expand All @@ -121,6 +154,15 @@ void sample_from_polytope(Polytope &P, int type, RNGType &rng, PointList &randPo
//' }
//' @param seed Optional. A fixed seed for the number generator.
//'
//' @references \cite{Robert L. Smith,
//' \dQuote{Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed Over Bounded Regions,} \emph{Operations Research,} 1984.},
//'
//' @references \cite{B.T. Polyak, E.N. Gryazina,
//' \dQuote{Billiard walk - a new sampling algorithm for control and optimization,} \emph{IFAC Proceedings Volumes,} 2014.},
//'
//' @references \cite{Y. Chen, R. Dwivedi, M. J. Wainwright and B. Yu,
//' \dQuote{Fast MCMC Sampling Algorithms on Polytopes,} \emph{Journal of Machine Learning Research,} 2018.}
//'
//' @return A \eqn{d\times n} matrix that contains, column-wise, the sampled points from the convex polytope P.
//' @examples
//' # uniform distribution from the 3d unit cube in H-representation using ball walk
Expand Down Expand Up @@ -172,6 +214,7 @@ Rcpp::NumericMatrix sample_points(Rcpp::Nullable<Rcpp::Reference> P,

NT radius = 1.0, L;
bool set_mode = false, gaussian = false, set_starting_point = false, set_L = false;

random_walks walk;

std::list<Point> randPoints;
Expand Down Expand Up @@ -230,38 +273,59 @@ Rcpp::NumericMatrix sample_points(Rcpp::Nullable<Rcpp::Reference> P,
}
} else if (Rcpp::as<std::string>(Rcpp::as<Rcpp::List>(random_walk)["walk"]).compare(std::string("CDHR")) == 0) {
walk = cdhr;
} else if (Rcpp::as<std::string>(Rcpp::as<Rcpp::List>(random_walk)["walk"]).compare(std::string("dikin")) == 0) {
walk = dikin_walk;
if (Rcpp::as<Rcpp::List>(random_walk).containsElementNamed("L")) {
L = Rcpp::as<NT>(Rcpp::as<Rcpp::List>(random_walk)["L"]);
set_L = true;
if (L <= 0.0) throw Rcpp::exception("L must be a postitive number!");
}
} else if (Rcpp::as<std::string>(Rcpp::as<Rcpp::List>(random_walk)["walk"]).compare(std::string("vaidya")) == 0) {
walk = vaidya_walk;
if (Rcpp::as<Rcpp::List>(random_walk).containsElementNamed("L")) {
L = Rcpp::as<NT>(Rcpp::as<Rcpp::List>(random_walk)["L"]);
set_L = true;
if (L <= 0.0) throw Rcpp::exception("L must be a postitive number!");
}
} else if (Rcpp::as<std::string>(Rcpp::as<Rcpp::List>(random_walk)["walk"]).compare(std::string("john")) == 0) {
walk = john_walk;
if (Rcpp::as<Rcpp::List>(random_walk).containsElementNamed("L")) {
L = Rcpp::as<NT>(Rcpp::as<Rcpp::List>(random_walk)["L"]);
set_L = true;
if (L <= 0.0) throw Rcpp::exception("L must be a postitive number!");
}
} else if (Rcpp::as<std::string>(Rcpp::as<Rcpp::List>(random_walk)["walk"]).compare(std::string("RDHR")) == 0) {
walk = rdhr;
} else if (Rcpp::as<std::string>(Rcpp::as<Rcpp::List>(random_walk)["walk"]).compare(std::string("BaW")) == 0) {
walk = ball_walk;
if (Rcpp::as<Rcpp::List>(random_walk).containsElementNamed("BaW_rad")) {
L = Rcpp::as<NT>(Rcpp::as<Rcpp::List>(random_walk)["BaW_rad"]);
set_L = true;
if (L<=0.0) throw Rcpp::exception("BaW diameter must be a postitive number!");
if (L <= 0.0) throw Rcpp::exception("BaW diameter must be a postitive number!");
}
} else if (Rcpp::as<std::string>(Rcpp::as<Rcpp::List>(random_walk)["walk"]).compare(std::string("BiW")) == 0) {
if (gaussian) throw Rcpp::exception("Billiard walk can be used only for uniform sampling!");
walk = billiard;
if (Rcpp::as<Rcpp::List>(random_walk).containsElementNamed("L")) {
L = Rcpp::as<NT>(Rcpp::as<Rcpp::List>(random_walk)["L"]);
set_L = true;
if (L<=0.0) throw Rcpp::exception("L must be a postitive number!");
if (L <= 0.0) throw Rcpp::exception("L must be a postitive number!");
}
} else if (Rcpp::as<std::string>(Rcpp::as<Rcpp::List>(random_walk)["walk"]).compare(std::string("aBiW")) == 0) {
if (gaussian) throw Rcpp::exception("Billiard walk can be used only for uniform sampling!");
walk = accelarated_billiard;
if (Rcpp::as<Rcpp::List>(random_walk).containsElementNamed("L")) {
L = Rcpp::as<NT>(Rcpp::as<Rcpp::List>(random_walk)["L"]);
set_L = true;
if (L<=0.0) throw Rcpp::exception("L must be a postitive number!");
if (L <= 0.0) throw Rcpp::exception("L must be a postitive number!");
}
} else if (Rcpp::as<std::string>(Rcpp::as<Rcpp::List>(random_walk)["walk"]).compare(std::string("BRDHR")) == 0) {
if (gaussian) throw Rcpp::exception("Gaussian sampling from the boundary is not supported!");
walk = brdhr;
}else if (Rcpp::as<std::string>(Rcpp::as<Rcpp::List>(random_walk)["walk"]).compare(std::string("BCDHR")) == 0) {
} else if (Rcpp::as<std::string>(Rcpp::as<Rcpp::List>(random_walk)["walk"]).compare(std::string("BCDHR")) == 0) {
if (gaussian) throw Rcpp::exception("Gaussian sampling from the boundary is not supported!");
walk = bcdhr;
}else {
} else {
throw Rcpp::exception("Unknown walk type!");
}

Expand Down
5 changes: 5 additions & 0 deletions include/cartesian_geom/point.h
Original file line number Diff line number Diff line change
Expand Up @@ -86,6 +86,11 @@ class point
coeffs(i) = coord;
}

void set_coeffs (const Coeff& coeffs2) {
d = coeffs2.rows();
coeffs = coeffs2;
}

void set_to_origin() {
coeffs.setZero(d);
}
Expand Down
7 changes: 7 additions & 0 deletions include/random_walks/ellipsoid_walks/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
1) This folder contains the C++ implementations -with several modifications- of the Dikin walk,
the Vaidya walk and the John walk from https://github.com/rzrsk/vaidya-walk by Raaz Dwivedi.

2) The implemented random walks are presented in the paper of
Y. Chen, R. Dwivedi, M. J. Wainwright and B. Yu,
"Fast MCMC Sampling Algorithms on Polytopes",
Journal of Machine Learning Research, 2018.
Loading

0 comments on commit 0fad1ce

Please sign in to comment.