Skip to content

Commit

Permalink
Marginal diagnostics and optimizations (#108)
Browse files Browse the repository at this point in the history
* improve implementations

* improve computation of inner ball for H-polytopes

* improve inner ball computation and improve tests

* update termination criterions in rounding methods

* update Rd file of Birkhoff R generator

* improve univariate psrf implemetations

* fix c++ tests

* update parameters in rounding and minor improvements

* fix gcc tests and improve birkhoff generator Rd file

* fix c++ tests

* improve R tests, remove ine and ext files

* fix c++ tests

* fix c++ tests for clang

* fix c++ tests

* merge and improve R examples

* change r tests and examples for inner_ball function

* improve R examples

* change priority in inner ball computation

* use only lpsolve for inner ball computation
  • Loading branch information
AlexManochis authored Sep 18, 2020
1 parent b15c2ca commit 375fa1f
Show file tree
Hide file tree
Showing 57 changed files with 617 additions and 813 deletions.
3 changes: 0 additions & 3 deletions .gitignore

This file was deleted.

5 changes: 5 additions & 0 deletions R-proj/NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@ export(direct_sampling)
export(exact_vol)
export(file_to_polytope)
export(frustum_of_simplex)
export(gen_birkhoff)
export(gen_cross)
export(gen_cube)
export(gen_prod_simplex)
Expand All @@ -15,8 +16,12 @@ export(gen_rand_zonotope)
export(gen_simplex)
export(gen_skinny_cube)
export(get_full_dimensional_polytope)
export(geweke)
export(inner_ball)
export(loadSdpaFormatFile)
export(psrf_multivariate)
export(psrf_univariate)
export(raftery)
export(readSdpaFormatFile)
export(rotate_polytope)
export(round_polytope)
Expand Down
36 changes: 30 additions & 6 deletions R-proj/R/RcppExports.R
Original file line number Diff line number Diff line change
Expand Up @@ -145,6 +145,8 @@ full_dimensional_polytope <- function(P) {
#' \dQuote{Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments,} \emph{ In Bayesian Statistics 4. Proceedings of the Fourth Valencia International Meeting,} 1992.}
#'
#' @return A boolean to denote if the result of Geweke diagnostic: (i) false if the null hypothesis is rejected, (ii) true if the null hypothesis is not rejected.
#'
#' @export
geweke <- function(samples, frac_first = NULL, frac_last = NULL) {
.Call(`_volesti_geweke`, samples, frac_first, frac_last)
}
Expand All @@ -155,21 +157,21 @@ geweke <- function(samples, frac_first = NULL, frac_last = NULL) {
#' For both zonotopes and V-polytopes the function computes the minimum \eqn{r} s.t.: \eqn{ r e_i \in P} for all \eqn{i=1, \dots ,d}. Then the ball centered at the origin with radius \eqn{r/ \sqrt{d}} is an inscribed ball.
#'
#' @param P A convex polytope. It is an object from class (a) Hpolytope or (b) Vpolytope or (c) Zonotope or (d) VpolytopeIntersection.
#' @param method Optional. A string to declare the method to be used: (i) \code{'lpsolve'} to use lpsolve library, (ii) \code{'ipm'} to use an interior point method which solves the corresponding linear program. The default method is \code{'lpsolve'}.
#' @param lpsolve Optional. A boolean variable to compute the Chebychev ball of an H-polytope using the lpsolve library.
#'
#' @return A \eqn{(d+1)}-dimensional vector that describes the inscribed ball. The first \eqn{d} coordinates corresponds to the center of the ball and the last one to the radius.
#'
#' @examples
#' # compute the Chebychev ball of the 2d unit simplex
#' P = gen_simplex(2,'H')
#' P = gen_cube(10,'H')
#' ball_vec = inner_ball(P)
#'
#' # compute an inscribed ball of the 3-dimensional unit cube in V-representation
#' P = gen_cube(3, 'V')
#' ball_vec = inner_ball(P)
#' @export
inner_ball <- function(P, method = NULL) {
.Call(`_volesti_inner_ball`, P, method)
inner_ball <- function(P, lpsolve = NULL) {
.Call(`_volesti_inner_ball`, P, lpsolve)
}

#' An internal Rccp function as a polytope generator
Expand Down Expand Up @@ -199,8 +201,28 @@ poly_gen <- function(kind_gen, Vpoly_gen, Zono_gen, dim_gen, m_gen, seed = NULL)
#' \dQuote{General Methods for Monitoring Convergence of Iterative Simulations,} \emph{Journal of Computational and Graphical Statistics,} 1998.}
#'
#' @return The value of multivariate PSRF by S. Brooks and A. Gelman.
psrf <- function(samples) {
.Call(`_volesti_psrf`, samples)
#'
#' @export
psrf_multivariate <- function(samples) {
.Call(`_volesti_psrf_multivariate`, samples)
}

#' Gelman-Rubin and Brooks-Gelman Potential Scale Reduction Factor (PSRF) for each marginal
#'
#' @param samples A matrix that contans column-wise the sampled points from a geometric random walk.
#' @param method A string to reauest diagnostic: (i) \code{'normal'} for psrf of Gelman-Rubin and (ii) \code{'interval'} for psrf of Brooks-Gelman.
#'
#' @references \cite{Gelman, A. and Rubin, D. B.,
#' \dQuote{Inference from iterative simulation using multiple sequences,} \emph{Statistical Science,} 1992.}
#'
#' @references \cite{Brooks, S. and Gelman, A.,
#' \dQuote{General Methods for Monitoring Convergence of Iterative Simulations,} \emph{Journal of Computational and Graphical Statistics,} 1998.}
#'
#' @return A vector that contains the values of PSRF for each coordinate
#'
#' @export
psrf_univariate <- function(samples, method = NULL) {
.Call(`_volesti_psrf_univariate`, samples, method)
}

#' Raftery and Lewis MCMC diagnostic
Expand All @@ -214,6 +236,8 @@ psrf <- function(samples) {
#' \dQuote{How many iterations in the Gibbs sampler?,} \emph{Bayesian Statistics 4. Proceedings of the Fourth Valencia International Meeting,} 1992.}
#'
#' @return (i) The number of draws required for burn-in, (ii) the skip parameter for 1st-order Markov chain, (iii) the skip parameter sufficient to get independence chain, (iv) the number of draws required to achieve r precision, (v) the number of draws if the chain is white noise, (vi) the I-statistic from Raftery and Lewis (1992).
#'
#' @export
raftery <- function(samples, q = NULL, r = NULL, s = NULL) {
.Call(`_volesti_raftery`, samples, q, r, s)
}
Expand Down
6 changes: 1 addition & 5 deletions R-proj/R/file_to_polytope.R
Original file line number Diff line number Diff line change
Expand Up @@ -8,10 +8,6 @@
#'
#' @return A polytope class. If the path corresponds to an ine file then the return value represents a H-polytope. If it corresponds to an ext file the return value represents a V-polytope (default choice) or a zonotope if the second argument is TRUE.
#'
#' @examples
#' # give the path to birk4.ine
#' path = system.file('extdata', package = 'volesti')
#' P = file_to_polytope(paste0(path,'/birk4.ine'))
#' @export
#' @useDynLib volesti, .registration=TRUE
#' @importFrom Rcpp evalCpp
Expand All @@ -20,7 +16,7 @@
#' @importFrom "stats" "cov"
#' @importFrom "methods" "new"
#' @exportPattern "^[[:alpha:]]+"
file_to_polytope <- function(path, zonotope){
file_to_polytope <- function(path, zonotope = FALSE){

ineorext=substr(path, start = nchar(path) - 2, stop = nchar(path))
if(ineorext!="ine" && ineorext!="ext") {
Expand Down
28 changes: 28 additions & 0 deletions R-proj/R/gen_birkhoff.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
#' Generator function for Birkhoff polytope
#'
#' This function can be used to generate the full dimensional \eqn{n}-Birkhoff polytope in H-representation.
#' The dimension of the generated polytope is \eqn{(n-1)^2}.
#'
#' @param n The order of the Birkhoff polytope
#'
#' @return A polytope class representing the full dimensional \eqn{n}-Birkhoff polytope in H-representation.
#' @examples
#' # generate the Birkhoff polytope of order 5
#' P = gen_birkhoff(5)
#' @export
gen_birkhoff <- function(n) {

kind_gen = 7
m_gen = 0

Mat = poly_gen(kind_gen, FALSE, FALSE, n, m_gen)

# first column is the vector b
b = Mat[,1]
Mat = Mat[,-c(1)]

P = Hpolytope$new(Mat, b)

return(P)

}
2 changes: 1 addition & 1 deletion R-proj/R/gen_cross.R
Original file line number Diff line number Diff line change
Expand Up @@ -38,4 +38,4 @@ gen_cross <- function(dimension, representation) {
}

return(P)
}
}
10 changes: 4 additions & 6 deletions R-proj/R/round_polytope.R
Original file line number Diff line number Diff line change
Expand Up @@ -19,17 +19,15 @@
#'
#'
#' @examples
#' # rotate a H-polytope (2d unit simplex)
#' A = matrix(c(-1,0,0,-1,1,1), ncol=2, nrow=3, byrow=TRUE)
#' b = c(0,0,1)
#' P = Hpolytope$new(A, b)
#' # round a 5d skinny cube
#' P = gen_skinny_cube(5)
#' listHpoly = round_polytope(P)
#'
#' # rotate a V-polytope (3d unit cube) using Random Directions HnR with step equal to 50
#' # round a V-polytope (3d unit cube)
#' P = gen_cube(3, 'V')
#' ListVpoly = round_polytope(P)
#'
#' # round a 2-dimensional zonotope defined by 6 generators using ball walk
#' # round a 2-dimensional zonotope defined by 6 generators
#' Z = gen_rand_zonotope(2,6)
#' ListZono = round_polytope(Z)
#' @export
Expand Down
3 changes: 1 addition & 2 deletions R-proj/R/zonotope_approximation.R
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
#'
#' @examples
#' # over-approximate a 2-dimensional zonotope with 10 generators and compute the ratio of fitness
#' Z = gen_rand_zonotope(2,8)
#' Z = gen_rand_zonotope(2,12)
#' retList = zonotope_approximation(Z = Z)
#'
#' @export
Expand All @@ -40,4 +40,3 @@ zonotope_approximation <- function(Z, fit_ratio = NULL, settings = NULL, seed =
return(PP)

}

Loading

0 comments on commit 375fa1f

Please sign in to comment.