Skip to content

On Variational Learning of Controllable Representations for Text without Supervision https://arxiv.org/abs/1905.11975

License

Notifications You must be signed in to change notification settings

BorealisAI/CP-VAE

Repository files navigation

CP-VAE

On Variational Learning of Controllable Representations for Text without Supervision

Paper published in ICML 2020: arXiv

Preprocess

Download the GloVe embeddings from this link to data/. Then run:

python preprocess.py --data_name <data_name>

Data name can be either yelp or amazon.

Train

Vanilla VAE:

python run_baseline.py --data_name <data_name>

Hyper-parameters can be set in baseline_config.py.

CP-VAE:

python run.py --data_name <data_name>

Hyper-parameters can be set in config.py.

Evaluation

Train the sentiment classifier:

python classifier.py --data_name <data_name>

Perform unsupervised style transfer:

Vanilla VAE:

python transfer_baseline.py --data_name <data_name> --load_path <path_to_checkpoint> --type <magnitude_type>

Magnitude type can be:

  • 0, no change
  • 1, move by one std
  • 2, move by two std
  • 3, move to extremum

CP-VAE:

python transfer.py --data_name <data_name> --load_path <path_to_checkpoint>

Calculate sentiment classification accuracy and BLEU score against the source sentence:

python evaluate.py --data_name <data_name> --target_path <path_to_target>

Analysis

Visualization of NLL discrepency

Copy the nll statistics from the checkpoint folders to plot/ and then run:

python plot_nll.py

Topological Data Analysis

python tda.py --data_name <data_name> --load_path <path_to_checkpoint> --resolution <n>
python tda_baseline.py --data_name <data_name> --load_path <path_to_checkpoint> --resolution <n>

Cite

If you found this codebase or our work useful, please cite:

@InProceedings{xu2020variational,
    author={Xu, Peng and Cheung, Jackie Chi Kit and Cao, Yanshuai},
    title={On Variational Learning of Controllable Representations for Text without Supervision},
    booktitle={The 37th International Conference on Machine Learning (ICML 2020)},
    month={July},
    year={2020},
    publisher={PMLR},
}

License

Copyright (c) 2018-present, Royal Bank of Canada. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree.

About

On Variational Learning of Controllable Representations for Text without Supervision https://arxiv.org/abs/1905.11975

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published