-
Notifications
You must be signed in to change notification settings - Fork 7
/
tda_baseline.py
95 lines (83 loc) · 2.88 KB
/
tda_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# Copyright (c) 2020-present, Royal Bank of Canada.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import baseline_config as config
import torch
from utils.text_utils import MonoTextData
from models.aggressive_vae import AgressiveVAE
import argparse
import numpy as np
import os
from utils.dist_utils import cal_log_density
import kmapper as km
import sklearn
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
def main(args):
conf = config.CONFIG[args.data_name]
data_pth = "data/%s" % args.data_name
train_data_pth = os.path.join(data_pth, "train_data.txt")
train_data = MonoTextData(train_data_pth, True)
vocab = train_data.vocab
dev_data_pth = os.path.join(data_pth, "dev_data.txt")
dev_data = MonoTextData(dev_data_pth, True, vocab=vocab)
test_data_pth = os.path.join(data_pth, "test_data.txt")
test_data = MonoTextData(test_data_pth, True, vocab=vocab)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
kwargs = {
"train": [1],
"valid": None,
"test": None,
"bsz": 32,
"save_path": args.load_path,
"logging": None,
}
params = conf["params"]
params["vae_params"]["vocab"] = vocab
params["vae_params"]["device"] = device
kwargs = dict(kwargs, **params)
model = AgressiveVAE(**kwargs)
model.load(args.load_path)
model.vae.eval()
bsz = 64
zs = []
idx = 0
step = 0
n_samples = len(train_data.labels)
n = 10000
selected_index = np.random.permutation(np.arange(n_samples))[:n]
while idx < n:
label = train_data.labels[idx]
_idx = idx + bsz
_idx = min(_idx, n)
inputs = []
for i in range(idx, _idx):
inputs.append(train_data.data[selected_index[i]])
text, _ = train_data._to_tensor(inputs, batch_first=False, device=device)
z, _ = model.vae.encode(text, 10)
z = z.squeeze().cpu().detach().numpy()
zs.append(z[:, :, :16].reshape(-1, 16))
idx = _idx
step += 1
if step % 100 == 0:
print(step, idx)
zs = np.vstack(zs)
mapper = km.KeplerMapper(verbose=1)
z_embed = mapper.fit_transform(zs, projection='sum')
graph = mapper.map(z_embed, zs,
clusterer=sklearn.cluster.DBSCAN(eps=0.1, min_samples=3, metric='cosine'),
cover=km.Cover(n_cubes=args.resolution, perc_overlap=0.4))
mapper.visualize(graph, path_html='plot/tda_baseline.html', title='tda baseline')
def add_args(parser):
parser.add_argument('--data_name', type=str, default='yelp')
parser.add_argument('--load_path', type=str)
parser.add_argument('--resolution', type=int, default=5)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
add_args(parser)
args = parser.parse_args()
main(args)