-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
46 changed files
with
56,934 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,230 @@ | ||
--- | ||
title: "R Notebook" | ||
output: html_notebook | ||
--- | ||
|
||
```{r} | ||
wd <- dirname(getwd()) | ||
#Set working directory and folder structure | ||
data_folder <- file.path(wd,'clinical_data') | ||
#set plot folder for results | ||
plot_folder <- file.path(wd,"results","merged") | ||
set.seed(101100) | ||
``` | ||
|
||
|
||
```{r} | ||
wd <-dirname(getwd()) | ||
t86a <- read.csv(file=file.path(wd,"clinical_data", paste("Resized_AreaMeasurements_Image_86A.csv"))) | ||
t86b <- read.csv(file=file.path(wd,"clinical_data", paste("Resized_AreaMeasurements_Image_86B.csv"))) | ||
t86c <- read.csv(file=file.path(wd,"clinical_data", paste("Resized_AreaMeasurements_Image_86C.csv"))) | ||
t87a <- read.csv(file=file.path(wd,"clinical_data", paste("Resized_AreaMeasurements_Image_87A.csv"))) | ||
t87b <- read.csv(file=file.path(wd,"clinical_data", paste("Resized_AreaMeasurements_Image_87B.csv"))) | ||
t87c <- read.csv(file=file.path(wd,"clinical_data", paste("Resized_AreaMeasurements_Image_87C.csv"))) | ||
t88a <- read.csv(file=file.path(wd,"clinical_data", paste("Resized_AreaMeasurements_Image_88A.csv"))) | ||
t88b <- read.csv(file=file.path(wd,"clinical_data", paste("Resized_AreaMeasurements_Image_88B.csv"))) | ||
t88c <- read.csv(file=file.path(wd,"clinical_data", paste("Resized_AreaMeasurements_Image_88C.csv"))) | ||
t175a <- read.csv(file=file.path(wd,"clinical_data", paste("Resized_AreaMeasurements_Image_175A.csv"))) | ||
t175b <- read.csv(file=file.path(wd,"clinical_data", paste("Resized_AreaMeasurements_Image_175B.csv"))) | ||
t175c <- read.csv(file=file.path(wd,"clinical_data", paste("Resized_AreaMeasurements_Image_175C.csv"))) | ||
t176a <- read.csv(file=file.path(wd,"clinical_data", paste("Resized_AreaMeasurements_Image_176A.csv"))) | ||
t176b <- read.csv(file=file.path(wd,"clinical_data", paste("Resized_AreaMeasurements_Image_176B.csv"))) | ||
t176c <- read.csv(file=file.path(wd,"clinical_data", paste("Resized_AreaMeasurements_Image_176C.csv"))) | ||
t178a <- read.csv(file=file.path(wd,"clinical_data", paste("Resized_AreaMeasurements_Image_178A.csv"))) | ||
t178b <- read.csv(file=file.path(wd,"clinical_data", paste("Resized_AreaMeasurements_Image_178B.csv"))) | ||
t178c <- read.csv(file=file.path(wd,"clinical_data", paste("Resized_AreaMeasurements_Image_178C.csv"))) | ||
t86a$TMA <- "86A" | ||
t86b$TMA <- "86B" | ||
t86c$TMA <- "86C" | ||
t87a$TMA <- "87A" | ||
t87b$TMA <- "87B" | ||
t87c$TMA <- "87C" | ||
t88a$TMA <- "88A" | ||
t88b$TMA <- "88B" | ||
t88c$TMA <- "88C" | ||
t175a$TMA <- "175A" | ||
t175b$TMA <- "175B" | ||
t175c$TMA <- "175C" | ||
t176a$TMA <- "176A" | ||
t176b$TMA <- "176B" | ||
t176c$TMA <- "176C" | ||
t178a$TMA <- "178A" | ||
t178b$TMA <- "178B" | ||
t178c$TMA <- "178C" | ||
t.area <-rbind(t86a,t86b,t86c,t87a,t87b,t87c,t88a,t88b,t88c,t175a,t175b,t175c,t176a,t176b,t176c,t178a,t178b,t178c) | ||
t.area$ImageID <- t.area$Metadata_acid | ||
t.area <- t.area %>% select(c(AreaOccupied_AreaOccupied_StromaBinary,AreaOccupied_AreaOccupied_TumourBinary,AreaOccupied_AreaOccupied_TumourStromaBinary,TMA, ImageID)) #ImageNumber | ||
t.area <-t.area %>% unite("TMA_ImageID", c(TMA, ImageID), remove=T) | ||
colnames(t.area) <- c("Area_px_Stroma","Area_px_Tumour","Area_px_Core", "TMA_ImageID") | ||
range(t.area$Area_px_Core)/1000000 | ||
hist(t.area$Area_px_Core/1000000) | ||
summary(t.area$Area_px_Core/1000000) | ||
t.area.mm <- | ||
t.area %>% | ||
dplyr::mutate_at(vars(Area_px_Stroma:Area_px_Core), | ||
.funs = funs(. /1000000)) | ||
t.area.mm[t.area.mm$Area_px_Core>1,] | ||
t.area.mm$ImageID <-NULL | ||
colnames(t.area.mm) <- c("Area_mm_Stroma","Area_mm_Tumour","Area_mm_Core", "TMA_ImageID") | ||
area <-left_join(t.area, t.area.mm, by="TMA_ImageID") | ||
write.csv(area, file=file.path(data_folder, "area.csv")) | ||
``` | ||
|
||
|
||
```{r} | ||
colData(roi.sce) <-as.data.frame(colData(roi.sce)) %>% | ||
unite(TMA_ImageID, c(TMA, ImageID), sep = "_", remove = FALSE) %>% left_join(area, by="TMA_ImageID") %>% DataFrame() | ||
colData(pat.sce) <-as.data.frame(colData(pat.sce)) %>% | ||
unite(TMA_ImageID, c(TMA, ImageID), sep = "_", remove = FALSE) %>% left_join(area, by="TMA_ImageID") %>% DataFrame() | ||
colData(roi.sce) <-as.data.frame(colData(roi.sce)) %>% | ||
unite(TMA_ImageID, c(TMA, ImageID), sep = "_", remove = FALSE) %>% left_join(area, by="TMA_ImageID") %>% DataFrame() | ||
colData(roi.pat.sce) <-as.data.frame(colData(roi.pat.sce)) %>% | ||
unite(TMA_ImageID, c(TMA, ImageID), sep = "_", remove = FALSE) %>% left_join(area, by="TMA_ImageID") %>% DataFrame() | ||
colData(immune.u1) <-as.data.frame(colData(immune.u1)) %>% | ||
unite(TMA_ImageID, c(TMA, ImageID), sep = "_", remove = FALSE) %>% left_join(area, by="TMA_ImageID") %>% DataFrame() | ||
colData(tumour.final) <-as.data.frame(colData(tumour.final)) %>% | ||
unite(TMA_ImageID, c(TMA, ImageID), sep = "_", remove = FALSE) %>% left_join(area, by="TMA_ImageID") %>% DataFrame() | ||
colData(vessel.sce) <-as.data.frame(colData(vessel.sce)) %>% | ||
unite(TMA_ImageID, c(TMA, ImageID), sep = "_", remove = FALSE) %>% left_join(area, by="TMA_ImageID") %>% DataFrame() | ||
colData(vessel.vessel_pat.sce) <-as.data.frame(colData(vessel.vessel_pat.sce)) %>% | ||
unite(TMA_ImageID, c(TMA, ImageID), sep = "_", remove = FALSE) %>% left_join(area, by="TMA_ImageID") %>% DataFrame() | ||
colData(tumour.final) <-as.data.frame(colData(tumour.final)) %>% | ||
unite(TMA_ImageID, c(TMA, ImageID), sep = "_", remove = FALSE) %>% left_join(area, by="TMA_ImageID") %>% DataFrame() | ||
#immune | ||
immune.o <-immune.final | ||
immune.final <-immune.o | ||
colData(immune.final) <-as.data.frame(colData(immune.final)) %>% | ||
unite(TMA_ImageID, c(TMA, ImageID), sep = "_", remove = FALSE) %>% left_join(area, by="TMA_ImageID") %>% DataFrame() | ||
dat.sce <- as_tibble(colData(immune.final)) | ||
dat.sce<-dat.sce %>% | ||
unite(TMA_ImageID, c(TMA, ImageID), sep = "_", remove = FALSE) | ||
dat.sce <-DataFrame(dat.sce) | ||
dat.sce<-merge(dat.sce, area, by="TMA_ImageID") | ||
rownames(dat.sce) <-paste(dat.sce$TmaID, dat.sce$TmaBlock, dat.sce$ImageID, dat.sce$CellNumber, sep='_') | ||
colData(immune.final) <- dat.sce | ||
colnames(immune.final) <-rownames(dat.sce) | ||
colData(immune.final) | ||
colnames(colData(immune.final)) | ||
#tcells | ||
tcells.o <-tcells.final | ||
tcells.final <-tcells.o | ||
colData(tcells.final) <-as.data.frame(colData(tcells.final)) %>% | ||
unite(TMA_ImageID, c(TMA, ImageID), sep = "_", remove = FALSE) %>% left_join(area, by="TMA_ImageID") %>% DataFrame() | ||
dat.sce <- as_tibble(colData(tcells.final)) | ||
dat.sce$Area_mm_Core <-NULL | ||
dat.sce$Area_mm_Stroma <-NULL | ||
dat.sce$Area_mm_Tumour <-NULL | ||
dat.sce$Area_px_Core <-NULL | ||
dat.sce$Area_px_Stroma <-NULL | ||
dat.sce$Area_px_Tumour <-NULL | ||
dat.sce$TMA_Image <-NULL | ||
dat.sce<-dat.sce %>% | ||
unite(TMA_ImageID, c(TMA, ImageID), sep = "_", remove = FALSE) | ||
dat.sce <-DataFrame(dat.sce) | ||
dat.sce<-merge(dat.sce, area, by="TMA_ImageID") | ||
rownames(dat.sce) <-paste(dat.sce$TmaID, dat.sce$TmaBlock, dat.sce$ImageID, dat.sce$CellNumber, sep='_') | ||
colData(tcells.final) <- dat.sce | ||
colnames(tcells.final) <-rownames(dat.sce) | ||
colData(tcells.final) | ||
colnames(colData(tcells.final)) | ||
#tumour | ||
dat.sce <- as_tibble(colData(tumour)) | ||
dat.sce<-dat.sce %>% | ||
unite(TMA_ImageID, c(TMA, ImageID), sep = "_", remove = FALSE) | ||
dat.sce <-DataFrame(dat.sce) | ||
dat.sce<-merge(dat.sce, area, by="TMA_ImageID") | ||
rownames(dat.sce) <-paste(dat.sce$TmaID, dat.sce$TmaBlock, dat.sce$ImageID, dat.sce$CellNumber, sep='_') | ||
colData(tumour) <- dat.sce | ||
colnames(tumour) <-rownames(dat.sce) | ||
colData(tumour) | ||
colnames(colData(tumour)) | ||
#fibro | ||
dat.sce <- as_tibble(colData(fibro.final.new)) | ||
dat.sce<-dat.sce %>% | ||
unite(TMA_ImageID, c(TMA, ImageID), sep = "_", remove = FALSE) | ||
dat.sce <-DataFrame(dat.sce) | ||
dat.sce<-merge(dat.sce, area, by="TMA_ImageID") | ||
rownames(dat.sce) <-paste(dat.sce$TmaID, dat.sce$TmaBlock, dat.sce$ImageID, dat.sce$CellNumber, sep='_') | ||
colData(fibro.final.new) <- dat.sce | ||
colnames(fibro.final.new) <-rownames(dat.sce) | ||
colData(fibro.final.new) | ||
colnames(colData(fibro.final.new)) | ||
#vessel | ||
dat.sce <- as_tibble(colData(vessel)) | ||
dat.sce<-dat.sce %>% | ||
unite(TMA_ImageID, c(TMA, ImageID), sep = "_", remove = FALSE) | ||
dat.sce <-DataFrame(dat.sce) | ||
dat.sce<-merge(dat.sce, area, by="TMA_ImageID") | ||
rownames(dat.sce) <-paste(dat.sce$TmaID, dat.sce$TmaBlock, dat.sce$ImageID, dat.sce$CellNumber, sep='_') | ||
colData(vessel) <- dat.sce | ||
colnames(vessel) <-rownames(dat.sce) | ||
colData(vessel) | ||
colnames(colData(vessel)) | ||
length(unique(tumour[,tumour$TMA=="88_A"]$ImageID)) | ||
order(unique(tumour[,tumour$TMA=="88_A"]$ImageID)) | ||
fibro$Area_mm | ||
``` | ||
|
||
```{r} | ||
wd <- dirname(getwd()) | ||
#Set working directory and folder structure | ||
data_folder <- file.path(wd,'TMA_all',"SCE") | ||
set.seed(101100) | ||
saveRDS(tumour,file=file.path(data_folder,paste("tumour_sce_merge_minus_ctrl_area.rds"))) | ||
saveRDS(immune,file=file.path(data_folder,paste("immune_sce_merge_minus_ctrl_area.rds"))) | ||
saveRDS(tcells,file=file.path(data_folder,paste("tcells_sce_merge_minus_ctrl_area.rds"))) | ||
saveRDS(fibro,file=file.path(data_folder,paste("fibro_sce_merge_minus_ctrl_area.rds"))) | ||
saveRDS(vessel,file=file.path(data_folder,paste("vessel_sce_merge_minus_ctrl_area.rds"))) | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,139 @@ | ||
--- | ||
title: "Prepare clinical data and position data" | ||
output: html_notebook | ||
--- | ||
```{r install needed packages} | ||
#install.packages("zoo") | ||
library("zoo") | ||
``` | ||
|
||
```{r Set file structure} | ||
wd <- (getwd()) | ||
data_folder <- file.path(dirname(wd),'clinical_data') | ||
``` | ||
|
||
|
||
```{r Read in clinical data} | ||
clinical.data <-read.csv(file=file.path(data_folder, paste("TMA_86_87_88_175_176_178_USZ.csv"))) | ||
``` | ||
|
||
```{r Read in position files} | ||
p86 <- read.csv(file=file.path(data_folder, paste("zTMA_86.csv")),header=T, na.strings=c("","NA")) | ||
p87 <- read.csv(file=file.path(data_folder, paste("zTMA_87.csv")),header=T, na.strings=c("","NA")) | ||
p88 <- read.csv(file=file.path(data_folder, paste("zTMA_88.csv")),header=T, na.strings=c("","NA")) | ||
p175 <-read.csv(file=file.path(data_folder, paste("zTMA_175.csv")),header=T, na.strings=c("","NA")) | ||
p176 <-read.csv(file=file.path(data_folder, paste("zTMA_176.csv")),header=T, na.strings=c("","NA")) | ||
p178 <- read.csv(file=file.path(data_folder, paste("zTMA_178.csv")),header=T, na.strings=c("","NA")) | ||
``` | ||
|
||
```{r Add missing patient numbers and ctrls} | ||
p86$Patient_Nr <-na.locf(p86$Patient_Nr) | ||
p87$Patient_Nr <-na.locf(p87$Patient_Nr) | ||
p88$Patient_Nr <-na.locf(p88$Patient_Nr) | ||
p175$Patient_Nr <-na.locf(p175$Patient_Nr) | ||
p176$Patient_Nr <-na.locf(p176$Patient_Nr) | ||
p178$Patient_Nr <-na.locf(p178$Patient_Nr) | ||
``` | ||
|
||
```{r Add TMA column to position data} | ||
p86["TMA"] <-"86" | ||
p87["TMA"] <-"87" | ||
p88["TMA"] <-"88" | ||
p175["TMA"] <-"175" | ||
p176["TMA"] <-"176" | ||
p178["TMA"] <-"178" | ||
``` | ||
|
||
```{r merge clinical data and position data} | ||
clinical.data_pos <-clinical.data | ||
#change Nr. to Patient_Nr | ||
names(clinical.data_pos)[names(clinical.data_pos) == 'Nr.'] <- 'Patient_Nr' | ||
#combine all position files rowwise | ||
p_combined <- rbind(p86,p87,p88,p175,p176,p178) | ||
clinical.data_pos <-merge(p_combined, clinical.data_pos, by.x=c("Patient_Nr", "TMA"), by.y=c("Patient_Nr","TMA")) | ||
``` | ||
|
||
```{r save combined clincal and position data as csv file} | ||
#write.csv(clinical.data_pos, file=file.path(data_folder,paste("combined_clinical_position_data.csv"))) | ||
clinical.data <- read.csv( file=file.path(data_folder,paste("combined_clinical_position_data.csv"))) | ||
table(clinical.data$DX.name) | ||
clinical.data$DX.name[clinical.data$DX.name == "Adeno-Ca"] <- "Adenocarcinoma" | ||
clinical.data$DX.name[clinical.data$DX.name == "Adeno-Ca "] <- "Adenocarcinoma" | ||
clinical.data$DX.name[clinical.data$DX.name == "PE-Ca"] <- "Squamous cell carcinoma" | ||
clinical.data$DX.name[clinical.data$DX.name == "adenosquam. Ca"] <- "Adeno squamous cell carcinoma" | ||
clinical.data$DX.name[clinical.data$DX.name == "ASQ"] <- "Adeno squamous cell carcinoma" | ||
clinical.data$DX.name[clinical.data$DX.name == "Adeno squamous cell carcinoma"] <- "Adeno squamous cell carcinoma" | ||
clinical.data$DX.name[clinical.data$DX.name == "Adenosquamöses CA"] <- "Adeno squamous cell carcinoma" | ||
clinical.data$DX.name[clinical.data$DX.name == "Adeno/squamous carcinoma"] <- "Adeno squamous cell carcinoma" | ||
clinical.data$DX.name[clinical.data$DX.name == "LC"] <- "Large cell carcinoma" | ||
clinical.data$DX.name[clinical.data$DX.name == "SCC"] <- "Squamous cell carcinoma" | ||
clinical.data$DX.name[clinical.data$DX.name == "LCNEC"] <- "Large cell neuroendocrine carcinoma" | ||
unique(clinical.data$DX.name) | ||
#add factor levels | ||
levels(clinical.data$Gender) <- list(male=1, female=2) | ||
levels(clinical.data$Grade) <- list("missing"=0,"Grade 1"=1, "Grade 2"=2,"Grade 3"=3) | ||
levels(clinical.data$Vessel) <- list("negative"=0, "positive"=1) | ||
levels(clinical.data$Pleura) <- list("negative"=0, "positive"=1) | ||
levels(clinical.data$R) <- list("R0"=0, "R1"=1) | ||
levels(clinical.data$Relapse) <- list("no"=0, "yes"=1) | ||
levels(clinical.data$Ev.O) <- list("alive"=0, "dead"=1) | ||
levels(clinical.data$T.new )<- list("1a"=1, "1b"=2,"2a"=3, "2b"=4, "3"=5, "4"=6) | ||
levels(clinical.data$M.new) <- list("no"=0, "1a"=1, "1b"=2) | ||
levels(clinical.data$N) <- list("N0"=0, "N1"=1,"N2"=2, "N3"=3) | ||
levels(clinical.data$Stage) <- list("1a"=1, "1b"=2,"2a"=3, "2b"=4, "3a"=5, "3b"=6,"4"=7) | ||
levels(clinical.data$Chemo) <- list("Neoadjuvant no"=0, "Neoadjuvant yes"=1) | ||
levels(clinical.data$Radio) <- list("Neoadjuvant no"=0, "Neoadjuvant yes"=1) | ||
levels(clinical.data$Chemo3) <- list("Adjuvant no"=0, "Adjuvant yes"=1) | ||
levels(clinical.data$Radio4) <- list("Adjuvant no"=0, "Adjuvant loc"=1, "Other"=2, "Both"=3) | ||
levels(clinical.data$Chemo3) <- list("Post relapse no"=0, "Post relapse yes"=1) | ||
levels(clinical.data$Radio6) <- list("Post relapse no"=0, "Post relapse loc"=1, "Post relapse other"=2, "Post relapse both"=3) | ||
levels(clinical.data$Smok) <- list("no"=0, "currently"=1, "former"=2, "unknown"=3) | ||
cols <- c("TMA","Gender","Typ","Grade","Vessel","Pleura","T.new","N","M.new","Stage","R","Chemo","Radio","Chemo3","Radio4","Relapse","Chemo5","Radio6","DFS","Ev.O" ,"Smok" ) | ||
clinical.data[cols] <- lapply(clinical.data[cols], as.factor) | ||
head(clinical.data) | ||
clinical.data$ROI <- paste(clinical.data$Grid, clinical.data$x.y.localisation, sep="") | ||
head(clinical.data$ROI) | ||
clinical.data$RoiID <-paste(clinical.data$TMA, clinical.data$ROI, sep="_") | ||
clinical.data$Patient_ID <- paste(clinical.data$TMA, clinical.data$Patient_Nr,sep="_") | ||
clinical.data$LN.Met <- ifelse(clinical.data$N ==0, "No LN Metastases", "LN Metastases") | ||
clinical.data$Dist.Met <- ifelse(clinical.data$M.new ==0, "No Dist. Metastases", "Dist. Metastases") | ||
clinical.data$NeoAdj <- ifelse(clinical.data$Radio==1 |clinical.data$Chemo==1, "NeoAdjuvantTherapy", "NoNeoAdjuvantTherapy") | ||
clinical.data$X <-NULL | ||
clinical.data$TmaBlock <- clinical.data$Grid | ||
clinical.data$Grid <-NULL | ||
clinical.data$x.localisation <-NULL | ||
clinical.data$y.localisation <-NULL | ||
wd <-"/mnt" | ||
data_folder <-(file.path(wd,"lena_processed2","NSCLC_NEW","clinical_data")) | ||
write.csv(clinical.data, file=file.path(data_folder,"clinical_data.csv")) | ||
``` | ||
|
||
|
||
```{r save position files} | ||
write.csv(p86, file=file.path(data_folder, paste("zTMA_86.csv"))) | ||
write.csv(p87, file=file.path(data_folder, paste("zTMA_87.csv"))) | ||
write.csv(p88, file=file.path(data_folder, paste("zTMA_88.csv"))) | ||
write.csv(p175, file=file.path(data_folder, paste("zTMA_175.csv"))) | ||
write.csv(p176, file=file.path(data_folder, paste("zTMA_176.csv"))) | ||
write.csv(p178, file=file.path(data_folder, paste("zTMA_178.csv"))) | ||
``` | ||
|
Oops, something went wrong.