Skip to content

Commit

Permalink
Revert "Remove double declaration of P in P256 (OpenZeppelin#5159)" (
Browse files Browse the repository at this point in the history
…OpenZeppelin#5180)

Signed-off-by: Hadrien Croubois <[email protected]>
  • Loading branch information
Amxx committed Oct 1, 2024
1 parent 90afffc commit 67ea678
Showing 1 changed file with 27 additions and 24 deletions.
51 changes: 27 additions & 24 deletions contracts/utils/cryptography/P256.sol
Original file line number Diff line number Diff line change
Expand Up @@ -145,9 +145,10 @@ library P256 {
*/
function isValidPublicKey(bytes32 x, bytes32 y) internal pure returns (bool result) {
assembly ("memory-safe") {
let lhs := mulmod(y, y, P) // y^2
let rhs := addmod(mulmod(addmod(mulmod(x, x, P), A, P), x, P), B, P) // ((x^2 + a) * x) + b = x^3 + ax + b
result := and(and(lt(x, P), lt(y, P)), eq(lhs, rhs)) // Should conform with the Weierstrass equation
let p := P
let lhs := mulmod(y, y, p) // y^2
let rhs := addmod(mulmod(addmod(mulmod(x, x, p), A, p), x, p), B, p) // ((x^2 + a) * x) + b = x^3 + ax + b
result := and(and(lt(x, p), lt(y, p)), eq(lhs, rhs)) // Should conform with the Weierstrass equation
}
}

Expand Down Expand Up @@ -187,29 +188,30 @@ library P256 {
uint256 z2
) private pure returns (uint256 rx, uint256 ry, uint256 rz) {
assembly ("memory-safe") {
let p := P
let z1 := mload(add(p1, 0x40))
let s1 := mulmod(mload(add(p1, 0x20)), mulmod(mulmod(z2, z2, P), z2, P), P) // s1 = y1*z2³
let s2 := mulmod(y2, mulmod(mulmod(z1, z1, P), z1, P), P) // s2 = y2*z1³
let r := addmod(s2, sub(P, s1), P) // r = s2-s1
let u1 := mulmod(mload(p1), mulmod(z2, z2, P), P) // u1 = x1*z2²
let u2 := mulmod(x2, mulmod(z1, z1, P), P) // u2 = x2*z1²
let h := addmod(u2, sub(P, u1), P) // h = u2-u1
let hh := mulmod(h, h, P) // h²
let s1 := mulmod(mload(add(p1, 0x20)), mulmod(mulmod(z2, z2, p), z2, p), p) // s1 = y1*z2³
let s2 := mulmod(y2, mulmod(mulmod(z1, z1, p), z1, p), p) // s2 = y2*z1³
let r := addmod(s2, sub(p, s1), p) // r = s2-s1
let u1 := mulmod(mload(p1), mulmod(z2, z2, p), p) // u1 = x1*z2²
let u2 := mulmod(x2, mulmod(z1, z1, p), p) // u2 = x2*z1²
let h := addmod(u2, sub(p, u1), p) // h = u2-u1
let hh := mulmod(h, h, p) // h²

// x' = r²-h³-2*u1*h²
rx := addmod(
addmod(mulmod(r, r, P), sub(P, mulmod(h, hh, P)), P),
sub(P, mulmod(2, mulmod(u1, hh, P), P)),
P
addmod(mulmod(r, r, p), sub(p, mulmod(h, hh, p)), p),
sub(p, mulmod(2, mulmod(u1, hh, p), p)),
p
)
// y' = r*(u1*h²-x')-s1*h³
ry := addmod(
mulmod(r, addmod(mulmod(u1, hh, P), sub(P, rx), P), P),
sub(P, mulmod(s1, mulmod(h, hh, P), P)),
P
mulmod(r, addmod(mulmod(u1, hh, p), sub(p, rx), p), p),
sub(p, mulmod(s1, mulmod(h, hh, p), p)),
p
)
// z' = h*z1*z2
rz := mulmod(h, mulmod(z1, z2, P), P)
rz := mulmod(h, mulmod(z1, z2, p), p)
}
}

Expand All @@ -219,18 +221,19 @@ library P256 {
*/
function _jDouble(uint256 x, uint256 y, uint256 z) private pure returns (uint256 rx, uint256 ry, uint256 rz) {
assembly ("memory-safe") {
let yy := mulmod(y, y, P)
let zz := mulmod(z, z, P)
let s := mulmod(4, mulmod(x, yy, P), P) // s = 4*x*y²
let m := addmod(mulmod(3, mulmod(x, x, P), P), mulmod(A, mulmod(zz, zz, P), P), P) // m = 3*x²+a*z⁴
let t := addmod(mulmod(m, m, P), sub(P, mulmod(2, s, P)), P) // t = m²-2*s
let p := P
let yy := mulmod(y, y, p)
let zz := mulmod(z, z, p)
let s := mulmod(4, mulmod(x, yy, p), p) // s = 4*x*y²
let m := addmod(mulmod(3, mulmod(x, x, p), p), mulmod(A, mulmod(zz, zz, p), p), p) // m = 3*x²+a*z⁴
let t := addmod(mulmod(m, m, p), sub(p, mulmod(2, s, p)), p) // t = m²-2*s

// x' = t
rx := t
// y' = m*(s-t)-8*y⁴
ry := addmod(mulmod(m, addmod(s, sub(P, t), P), P), sub(P, mulmod(8, mulmod(yy, yy, P), P)), P)
ry := addmod(mulmod(m, addmod(s, sub(p, t), p), p), sub(p, mulmod(8, mulmod(yy, yy, p), p)), p)
// z' = 2*y*z
rz := mulmod(2, mulmod(y, z, P), P)
rz := mulmod(2, mulmod(y, z, p), p)
}
}

Expand Down

0 comments on commit 67ea678

Please sign in to comment.