Skip to content

A simple pytorch implementation of CenterNet (Objects as Points)

Notifications You must be signed in to change notification settings

zzzxxxttt/pytorch_simple_CenterNet_45

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pytorch simple CenterNet-45

If you are looking for another CenterNet, try this!

This repository is a simple pytorch implementation of Objects as Points, some of the code is taken from the official implementation. As the name says, this version is simple and easy to read, all the complicated parts (dataloader, hourglass, training loop, etc) are all rewrote in a simpler way.
By the way the support of nn.parallel.DistributedDataParallel is also added, so this implementation trains significantly faster than the official code (~ 75 img/s vs ~36 img/s on 8 GPUs).

Enjoy!

Requirements:

  • python>=3.5
  • pytorch==0.4.1 or 1.1.0 (DistributedDataParallel training only available using 1.1.0)
  • tensorboardX(optional)

Getting Started

  1. Disable cudnn batch normalization. Open torch/nn/functional.py and find the line with torch.batch_norm and replace the torch.backends.cudnn.enabled with False.

  2. Clone this repo:

    CenterNet_ROOT=/path/to/clone/CenterNet
    git clone https://github.com/zzzxxxttt/pytorch_simple_CenterNet_45 $CenterNet_ROOT
    
  3. Install COCOAPI (the cocoapi in this repo is modified to work with python3):

    cd $CenterNet_ROOT/lib/cocoapi/PythonAPI
    make
    python setup.py install --user
    
  4. Compile deformable convolutional (from DCNv2). If you are using pytorch 0.4.1, rename $CenterNet_ROOT/lib/DCNv2_old to $CenterNet_ROOT/lib/DCNv2, otherwise rename $CenterNet_ROOT/lib/DCNv2_new to $CenterNet_ROOT/lib/DCNv2.

    cd $CenterNet_ROOT/lib/DCNv2
    ./make.sh
    
  5. Compile NMS.

    cd $CenterNet_ROOT/lib/nms
    make
    
  6. For COCO training, Download COCO dataset and put annotations, train2017, val2017, test2017 (or create symlinks) into $CenterNet_ROOT/data/coco

  7. For Pascal VOC training, download VOC0712 in coco format (password: 4iu2) and put annotations, images, VOCdevkit (or create symlinks) into $CenterNet_ROOT/data/voc

  8. To train Hourglass-104, download CornerNet pretrained weights (password: y1z4) and put checkpoint.t7 into $CenterNet_ROOT/ckpt/pretrain.

Train

COCO

single GPU or multi GPU using nn.DataParallel

python train.py --log_name coco_hg_512_dp \
                --dataset coco \
                --arch large_hourglass \
                --lr 5e-4 \
                --lr_step 90,120 \
                --batch_size 48 \
                --num_epochs 140 \  
                --num_workers 10

multi GPU using nn.parallel.DistributedDataParallel

python -m torch.distributed.launch --nproc_per_node NUM_GPUS train.py --dist \
        --log_name coco_hg_512_ddp \
        --dataset coco \
        --arch large_hourglass \
        --lr 5e-4 \
        --lr_step 90,120 \
        --batch_size 48 \
        --num_epochs 140 \
        --num_workers 2

PascalVOC

single GPU or multi GPU using nn.DataParallel

python train.py --log_name pascal_resdcn18_384_dp \
                --dataset pascal \
                --arch resdcn_18 \
                --img_size 384 \
                --lr 1.25e-4 \
                --lr_step 45,60 \
                --batch_size 32 \
                --num_epochs 70 \
                --num_workers 10

multi GPU using nn.parallel.DistributedDataParallel

python -m torch.distributed.launch --nproc_per_node NUM_GPUS train.py --dist \
        --log_name pascal_resdcn18_384_ddp \
        --dataset pascal \
        --arch resdcn_18 \
        --img_size 384 \
        --lr 1.25e-4 \
        --lr_step 45,60 \
        --batch_size 32 \
        --num_epochs 70 \
        --num_workers 2

Evaluate

COCO

python test.py --log_name coco_hg_512_dp \
               --dataset coco \
               --arch large_hourglass

# flip test
python test.py --log_name coco_hg_512_dp \
               --dataset coco \
               --arch large_hourglass \
               --test_flip

# multi scale test
python test.py --log_name coco_hg_512_dp \
               --dataset coco \
               --arch large_hourglass \
               --test_flip \
               --test_scales 0.5,0.75,1,1.25,1.5

PascalVOC

python test.py --log_name pascal_resdcn18_384_dp \
               --dataset pascal \
               --arch resdcn_18 \
               --img_size 384

# flip test
python test.py --log_name pascal_resdcn18_384_dp \
               --dataset pascal \
               --arch resdcn_18 \
               --img_size 384 \
               --test_flip

Results:

COCO:

Model Training image size mAP
Hourglass-104 (DP) 512 39.9/42.3/45.0
Hourglass-104 (DDP) 512 40.5/42.6/45.3

PascalVOC:

Model Training image size mAP model
ResDCN-18 (DDP) 384 71.19/72.99 password: 83rv
ResDCN-18 (DDP) 512 72.76/75.69 password: s8d5

Demo:

python demo.py --img_dir ./demo.jpg \
               --ckpt_dir ./ckpt/pascal_resdcn18_512/checkpoint.t7 \ 
               --dataset pascal \
               --arch resdcn_18 \
               --img_size 512 \

Demo results: