forked from apache/tvm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Meta Schedule][M3c] Schedule Rules, Mutator & Postprocs (apache#485) [Meta Schedule][M3c] PostOrderApply (apache#486) Fix Post Order Apply (apache#490) [MetaSchedule] Relay Integration (apache#489) [M3c][Meta Schedule] Add Trace Correctness Test for PostOrderApply (apache#492) Fix replay trace. (apache#493) [M3c][Meta Schedule] Implement the Replay Func class. (apache#495) [PR] Test script for meta-schedule task extraction. Interface to load… (apache#494) [Meta Schedule Refactor] Get child blocks (apache#500) Read-at && Write-at (apache#497) [M3c][Meta Schedule] Measure Callbacks (apache#498) [Bug] Fix Infinite Loop Caused When Calling Methods Not Overrided In PyClass (apache#496) [MetaSchedule] Sample-Perfect-Tile (apache#501) [MetaSchedule] TE Workloads (apache#502) [TensorIR] GetProducer, GetConsumer (apache#506) [MetaScheduleRefactor] Annotate&Unannotate (apache#505) [MetaSchedule] Multi-Level-Tiling & Auto-Inline (apache#503) [Tests] Add unittests for auto-inline and multi-level-tiling (apache#508) [Meta Schedule] Minor Fixes (apache#507) [MetaSchedule] Rewrite Cooperative-Fetching / Unbound-Block / Reduction-Block (apache#509) [MetaSchedule] Rewrite Parallel-Vectorize-Unroll / Verify-GPU / Disallow-Dynamic-Loops (apache#499) [Meta Schedule] Add Helper Function & Minor Modification (apache#512) [MetaSchedule] Test for Rewrite Parallel-Vectorize-Unroll (apache#513) [Meta Schedule] Feature Extractor & Cost Model (apache#510) Blockize & Tensorize (apache#514) Layout Rewriting: Suggest-Index-Map (apache#520) [MetaSchedule] Parallel-Vectorize-Unroll & Random-Compute-Location (apache#516) [Meta Schedule] Per-Store-Feature (apache#521) Add traced schedule for blockize & tensorize (apache#526) [Meta Schedule] Add XGBoost Model & Random Model (apache#519) User-Interface: Tune-TIR (apache#525) User-Interface: Tune-TE (apache#527) [Minor] More logging on python (apache#528) Get CUDA tuning working (apache#529) [MetaSchedule] TensorRT BYOC (apache#518) [BugFix] LocalBuilder API (apache#531) [Meta Schedule] Add Cost Model Update Measure Callback (apache#530) [Bugfix] BuilderInput with default params (apache#532) [MetaSchedule] Mutator-Tile-Size, Mutate-Parallel, Mutate-Unroll (apache#534) [Meta Schedule] Evolutionary Search (apache#522) [BugFix] Remove duplicated definition of MakeMultinomialSampler (apache#535) [Meta Schedule] Fix some bugs (apache#537) Co-authored-by: Siyuan Feng <[email protected]> Co-authored-by: Bohan Hou <[email protected]> Co-authored-by: Hongyi Jin <[email protected]> Co-authored-by: Ruihang Lai <[email protected]> Co-authored-by: Junru Shao <[email protected]> Co-authored-by: Wuwei Lin <[email protected]> Co-authored-by: Sunghyun Park <[email protected]> Co-authored-by: Xiyou Zhou <[email protected]>
- Loading branch information
1 parent
f98a8e9
commit d1fce89
Showing
2 changed files
with
308 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,307 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
"""A collection of TIR tensor intrinsics""" | ||
# pylint: disable=missing-function-docstring | ||
import tvm | ||
from tvm import tir | ||
from tvm.script import tir as T | ||
|
||
# pylint: disable=invalid-name,no-member,line-too-long,too-many-nested-blocks | ||
# fmt: off | ||
|
||
@T.prim_func | ||
def tensorcore_desc(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
A = T.match_buffer(a, (16, 16), align=128, offset_factor=1) | ||
B = T.match_buffer(b, (16, 16), align=128, offset_factor=1) | ||
C = T.match_buffer(c, (16, 16), align=128, offset_factor=1) | ||
|
||
with T.block("root"): | ||
vi = T.axis.S(16, 0) | ||
vj = T.axis.S(16, 0) | ||
vk = T.axis.R(16, 0) | ||
for i, j, k in T.grid(16, 16, 16): | ||
with T.block("update"): | ||
vii = T.axis.S(16, vi + i) | ||
vjj = T.axis.S(16, vj + j) | ||
vkk = T.axis.R(16, vk + k) | ||
C[vii, vjj] = C[vii, vjj] + A[vii, vkk] * B[vjj, vkk] | ||
|
||
|
||
@T.prim_func | ||
def tensorcore_impl(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
A = T.match_buffer(a, (16, 16), align=128, offset_factor=1) | ||
B = T.match_buffer(b, (16, 16), align=128, offset_factor=1) | ||
C = T.match_buffer(c, (16, 16), align=128, offset_factor=1) | ||
|
||
with T.block("root"): | ||
vi = T.axis.S(16, 0) | ||
vj = T.axis.S(16, 0) | ||
vk = T.axis.R(16, 0) | ||
T.reads([ | ||
C[vi : vi + 16, vj : vj + 16], | ||
A[vi : vi + 16, vk : vk + 16], | ||
B[vj : vj + 16, vk : vk + 16], | ||
]) | ||
T.writes(C[vi : vi + 16, vj : vj + 16]) | ||
T.evaluate( | ||
T.tvm_mma_sync( | ||
C.data, | ||
C.elem_offset // 256, | ||
A.data, | ||
A.elem_offset // 256, | ||
B.data, | ||
B.elem_offset // 256, | ||
C.data, | ||
C.elem_offset // 256, | ||
dtype="handle", | ||
) | ||
) | ||
|
||
|
||
@T.prim_func | ||
def dot_product_desc(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
A = T.match_buffer(a, (4,)) | ||
B = T.match_buffer(b, (4,)) | ||
C = T.match_buffer(c, (1,)) | ||
|
||
with T.block("root"): | ||
v0 = T.axis.R(4, 0) | ||
for i in range(0, 4): | ||
with T.block("update"): | ||
vi = T.axis.R(4, v0 + i) | ||
C[0] = C[0] + A[vi] * B[vi] | ||
|
||
|
||
@T.prim_func | ||
def dot_product_impl(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
A = T.match_buffer(a, (4,)) | ||
B = T.match_buffer(b, (4,)) | ||
C = T.match_buffer(c, (1,)) | ||
|
||
with T.block("root"): | ||
v0 = T.axis.R(4, 0) | ||
T.reads([C[0 : 1], A[v0 : v0 + 4], B[v0 : v0 + 4]]) | ||
T.writes([C[0 : 1]]) | ||
T.evaluate(T.call_extern( # pylint: disable=redundant-keyword-arg | ||
"vec4add", | ||
C.data, C.elem_offset, | ||
A.data, A.elem_offset, | ||
B.data, B.elem_offset, | ||
dtype="int32", | ||
)) | ||
|
||
@T.prim_func | ||
def wmma_sync_desc(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
A = T.match_buffer(a, (16, 16), "float16", align=128, offset_factor=1, scope="wmma.matrix_a") | ||
B = T.match_buffer(b, (16, 16), "float16", align=128, offset_factor=1, scope="wmma.matrix_b") | ||
C = T.match_buffer(c, (16, 16), "float32", align=128, offset_factor=1, scope="wmma.accumulator") | ||
|
||
with T.block("root"): | ||
vi = T.axis.S(16, 0) | ||
vj = T.axis.S(16, 0) | ||
vk = T.axis.R(16, 0) | ||
for i, j, k in T.grid(16, 16, 16): | ||
with T.block("update"): | ||
vii = T.axis.S(16, vi + i) | ||
vjj = T.axis.S(16, vj + j) | ||
vkk = T.axis.R(16, vk + k) | ||
C[vii, vjj] = C[vii, vjj] + T.cast(A[vii, vkk], "float32") * T.cast(B[vkk, vjj], | ||
"float32") | ||
|
||
|
||
@T.prim_func | ||
def wmma_sync_impl(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
A = T.match_buffer(a, (16, 16), "float16", align=128, offset_factor=16, scope="wmma.matrix_a") | ||
B = T.match_buffer(b, (16, 16), "float16", align=128, offset_factor=16, scope="wmma.matrix_b") | ||
C = T.match_buffer(c, (16, 16), "float32", align=128, offset_factor=16, | ||
scope="wmma.accumulator") | ||
|
||
with T.block("root"): | ||
vi = T.axis.S(16, 0) | ||
vj = T.axis.S(16, 0) | ||
vk = T.axis.R(16, 0) | ||
T.reads([C[vi: vi+16, vj: vj+16], A[vi: vi+16, vk: vk+16], B[vk: vk+16, vj: vj+16]]) | ||
T.writes(C[vi: vi+16, vj: vj+16]) | ||
T.evaluate(T.tvm_mma_sync(C.data, C.elem_offset // 256 + T.floordiv(T.floormod(C.elem_offset, 256), 16), | ||
A.data, A.elem_offset // 256 + T.floordiv(T.floormod(A.elem_offset, 256), 16), | ||
B.data, B.elem_offset // 256 + T.floordiv(T.floormod(B.elem_offset, 256), 16), | ||
C.data, C.elem_offset // 256 + T.floordiv(T.floormod(C.elem_offset, 256), 16), | ||
dtype="handle")) | ||
|
||
|
||
@T.prim_func | ||
def wmma_load_a_desc(a: T.handle, c: T.handle) -> None: | ||
A = T.match_buffer(a, (16, 16), "float16", align=128, offset_factor=16, | ||
scope="shared") | ||
C = T.match_buffer(c, (16, 16), "float16", align=128, offset_factor=16, | ||
scope="wmma.matrix_a") | ||
|
||
with T.block("root"): | ||
vi = T.axis.S(16, 0) | ||
vj = T.axis.S(16, 0) | ||
for i, j in T.grid(16, 16): | ||
with T.block("load"): | ||
vii = T.axis.S(16, vi + i) | ||
vjj = T.axis.S(16, vj + j) | ||
C[vii, vjj] = A[vii, vjj] | ||
|
||
|
||
@T.prim_func | ||
def wmma_load_a_impl(a: T.handle, c: T.handle) -> None: | ||
s1 = T.var("int32") | ||
s0 = T.var("int32") | ||
A = T.match_buffer(a, (16, 16), "float16", align=128, offset_factor=16, scope="shared", strides=[s1, s0]) | ||
C = T.match_buffer(c, (16, 16), "float16", align=128, offset_factor=16, scope="wmma.matrix_a") | ||
|
||
with T.block("root"): | ||
vi = T.axis.S(16, 0) | ||
vj = T.axis.S(16, 0) | ||
T.reads(A[vi: vi+16, vj: vj+16]) | ||
T.writes(C[vi: vi+16, vj: vj+16]) | ||
T.evaluate(T.tvm_load_matrix_sync( | ||
C.data, 16, 16, 16, C.elem_offset // 256 + T.floordiv(T.floormod(C.elem_offset, 256), 16), A.access_ptr("r"), s1, "row_major", | ||
dtype="handle")) | ||
|
||
|
||
@T.prim_func | ||
def wmma_load_b_desc(a: T.handle, c: T.handle) -> None: | ||
A = T.match_buffer(a, (16, 16), "float16", align=128, offset_factor=16, scope="shared") | ||
C = T.match_buffer(c, (16, 16), "float16", align=128, offset_factor=16, scope="wmma.matrix_b") | ||
with T.block("root"): | ||
vi = T.axis.S(16, 0) | ||
vj = T.axis.S(16, 0) | ||
for i, j in T.grid(16, 16): | ||
with T.block("load"): | ||
vii = T.axis.S(16, vi + i) | ||
vjj = T.axis.S(16, vj + j) | ||
C[vii, vjj] = A[vii, vjj] | ||
|
||
|
||
@T.prim_func | ||
def wmma_load_b_impl(a: T.handle, c: T.handle) -> None: | ||
s1 = T.var("int32") | ||
s0 = T.var("int32") | ||
A = T.match_buffer(a, (16, 16), "float16", align=128, offset_factor=16, scope="shared", strides=[s1, s0]) | ||
C = T.match_buffer(c, (16, 16), "float16", align=128, offset_factor=16, scope="wmma.matrix_b") | ||
with T.block("root"): | ||
vi = T.axis.S(16, 0) | ||
vj = T.axis.S(16, 0) | ||
T.reads(A[vi: vi+16, vj: vj+16]) | ||
T.writes(C[vi: vi+16, vj: vj+16]) | ||
T.evaluate(T.tvm_load_matrix_sync( | ||
C.data, 16, 16, 16, C.elem_offset // 256 + T.floordiv(T.floormod(C.elem_offset, 256), 16), A.access_ptr("r"), s1, "row_major", | ||
dtype="handle")) | ||
|
||
|
||
@T.prim_func | ||
def wmma_fill_desc(c: T.handle) -> None: | ||
C = T.match_buffer(c, (16, 16), "float32", align=128, offset_factor=16, scope="wmma.accumulator") | ||
with T.block("root"): | ||
vi = T.axis.S(16, 0) | ||
vj = T.axis.S(16, 0) | ||
for i, j in T.grid(16, 16): | ||
with T.block("init"): | ||
vii = T.axis.S(16, vi + i) | ||
vjj = T.axis.S(16, vj + j) | ||
C[vii, vjj] = T.float32(0) | ||
|
||
|
||
@T.prim_func | ||
def wmma_fill_impl(c: T.handle) -> None: | ||
C = T.match_buffer(c, (16, 16), "float32", align=128, offset_factor=16, scope="wmma.accumulator") | ||
with T.block("root"): | ||
vi = T.axis.S(16, 0) | ||
vj = T.axis.S(16, 0) | ||
T.reads([]) | ||
T.writes(C[vi : vi + 16, vj : vj + 16]) | ||
T.evaluate(T.tvm_fill_fragment(C.data, 16, 16, 16, C.elem_offset // 256 + T.floordiv(T.floormod(C.elem_offset, 256), 16), T.float32(0), dtype="handle")) | ||
|
||
|
||
@T.prim_func | ||
def wmma_store_desc(a: T.handle, c: T.handle) -> None: | ||
A = T.match_buffer(a, (16, 16), "float32", align=128, offset_factor=16, scope="wmma.accumulator") | ||
C = T.match_buffer(c, (16, 16), "float32", align=128, offset_factor=16, scope="global") | ||
with T.block("root"): | ||
vi = T.axis.S(16, 0) | ||
vj = T.axis.S(16, 0) | ||
for i, j in T.grid(16, 16): | ||
with T.block("store"): | ||
vii = T.axis.S(16, vi + i) | ||
vjj = T.axis.S(16, vj + j) | ||
C[vii, vjj] = A[vii, vjj] | ||
|
||
|
||
@T.prim_func | ||
def wmma_store_impl(a: T.handle, c: T.handle) -> None: | ||
s1 = T.var("int32") | ||
s0 = T.var("int32") | ||
A = T.match_buffer(a, (16, 16), "float32", align=128, offset_factor=16, scope="wmma.accumulator") | ||
C = T.match_buffer(c, (16, 16), "float32", align=128, offset_factor=16, scope="global", strides=[s1, s0]) | ||
with T.block("root"): | ||
vi = T.axis.S(16, 0) | ||
vj = T.axis.S(16, 0) | ||
T.reads(A[vi: vi + 16, vj: vj + 16]) | ||
T.writes(C[vi: vi+16, vj: vj+16]) | ||
T.evaluate(T.tvm_store_matrix_sync( | ||
A.data, 16, 16, 16, A.elem_offset // 256 + T.floordiv(T.floormod(A.elem_offset, 256), 16), C.access_ptr("w"), s1, "row_major", | ||
dtype="handle")) | ||
|
||
|
||
# fmt: on | ||
# pylint: enable=invalid-name,no-member,line-too-long,too-many-nested-blocks | ||
|
||
TENSORCORE_WMMA = tir.TensorIntrin.register( | ||
"test.tensorcore.wmma", | ||
tensorcore_desc, | ||
tensorcore_impl, | ||
) | ||
|
||
NEON_DOT = tir.TensorIntrin.register( | ||
"test.neon.dot", | ||
dot_product_desc, | ||
dot_product_impl, | ||
) | ||
|
||
WMMA_SYNC = tir.TensorIntrin.register( | ||
"wmma_sync", | ||
wmma_sync_desc, | ||
wmma_sync_impl, | ||
) | ||
|
||
WMMA_LOAD_A = tir.TensorIntrin.register( | ||
"wmma_load_a", | ||
wmma_load_a_desc, | ||
wmma_load_a_impl, | ||
) | ||
|
||
WMMA_LOAD_B = tir.TensorIntrin.register( | ||
"wmma_load_b", | ||
wmma_load_b_desc, | ||
wmma_load_b_impl, | ||
) | ||
|
||
WMMA_FILL = tir.TensorIntrin.register( | ||
"wmma_fill", | ||
wmma_fill_desc, | ||
wmma_fill_impl, | ||
) | ||
|
||
WMMA_FILL = tir.TensorIntrin.register( | ||
"wmma_store", | ||
wmma_store_desc, | ||
wmma_store_impl, | ||
) |