This work is built upon the codebase FSCE and FsDet v0.1.
FsDet is built on Detectron2. The required dependencies to build FsDet
is as below. Necessary libraries and functions are available in the folder FsDet.
Dependencies
- Linux with Python >= 3.6
- PyTorch >= 1.3
- torchvision that matches the PyTorch installation
- Dependencies:
pip install -r requirements.txt
- pycocotools:
pip install cython; pip install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
- fvcore:
pip install 'git+https://github.com/facebookresearch/fvcore'
- OpenCV, optional, needed by demo and visualization
pip install opencv-python
- GCC >= 4.9
- CUDA >= 10.2 (CUDA >= 11 is not recommended)
Build
python setup.py build develop
We adopt the same benchmarks as in FSCE and FsDet, experiments are implemented on two datasets: PASCAL VOC and COCO.
- PASCAL VOC: We use the train/val sets of PASCAL VOC 2007+2012 for training and the test set of PASCAL VOC 2007 for evaluation. We randomly split the 20 object classes into 15 base classes and 5 novel classes, and we consider 3 random splits. The splits can be found in fsdet/data/datasets/builtin_meta.py.
- COCO: We use COCO 2014 without COCO minival for training and the 5,000 images in COCO minival for testing. We use the 20 object classes that are the same with PASCAL VOC as novel classes and use the rest as base classes.
The datasets and data splits are built-in, simply make sure the directory structure agrees with datasets/README.md to launch the program.
The default seed that is used to report performace in research papers can be found here.
The code structure follows Detectron2 v0.1.* and fsdet.
- configs: Configuration files (
YAML
) for train/test jobs. - datasets: Dataset files (see Data Preparation for more details)
- fsdet
- checkpoint: Checkpoint code.
- config: Configuration code and default configurations.
- data: Dataset code.
- engine: Contains training and evaluation loops and hooks.
- evaluation: Evaluation code for different datasets.
- layers: Implementations of different layers used in models.
- modeling: Code for models, including backbones, proposal networks, and prediction heads.
- The majority of functionality are implemtended in
modeling/roi_heads/*
,modeling/contrastive_loss.py
, andmodeling/utils.py
- So one can first make sure FsDet v0.1 runs smoothly.
- The majority of functionality are implemtended in
- solver: Scheduler and optimizer code.
- structures: Data types, such as bounding boxes and image lists.
- utils: Utility functions.
- tools
- train_net.py: Training script.
- test_net.py: Testing script.
- ckpt_surgery.py: Surgery on checkpoints.
- run_experiments.py: Running experiments across many seeds.
- aggregate_seeds.py: Aggregating results from many seeds.
We follow the eaact training procedure of FsDet and we use random initialization for novel weights. For a full description of training procedure, see here.
sh train.sh
python tools/train_net.py --num-gpus 8 \
--config-file configs/PASCAL_VOC/base-training/R101_FPN_base_training_split1.yml
sh random_init.sh
python tools/ckpt_surgery.py \
--src1 checkpoints/voc/faster_rcnn/faster_rcnn_R_101_FPN_base1/model_final.pth \
--method randinit \
--save-dir checkpoints/voc/faster_rcnn/faster_rcnn_R_101_FPN_all1
This step will create a model_surgery.pth
from model_final.pth
.
Don't forget the --coco
and --lvis
options when work on the COCO and LVIS datasets, see ckpt_surgery.py
for all arguments details.
sh fintune.sh
python tools/train_net.py --num-gpus 8 \
--config-file configs/PASCAL_VOC/split1/10shot_CL_IoU.yml
To evaluate the trained models, run
sh evaluate.sh
python tools/test_net.py --num-gpus 8 \
--config-file configs/PASCAL_VOC/split1/10shot_CL_IoU.yml \
--eval-only
Or you can specify TEST.EVAL_PERIOD
in the configuation yml to evaluate during training. Please pay attention to the logs in the terminal to ensure you are evaluation on the correct weight file.