Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Batch Verification API #59

Merged
merged 12 commits into from
Feb 11, 2021
5 changes: 5 additions & 0 deletions Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ subtle = "2.2.1"

[dev-dependencies]
bls12_381 = "0.4"
criterion = "0.3"
hex-literal = "0.3"
rand = "0.8"
rand_xorshift = "0.3"
Expand All @@ -40,5 +41,9 @@ name = "mimc"
path = "tests/mimc.rs"
required-features = ["groth16"]

[[bench]]
name = "batch"
harness = false

[badges]
maintenance = { status = "actively-developed" }
98 changes: 98 additions & 0 deletions benches/batch.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion, Throughput};

use bls12_381::Bls12;
use ff::Field;
use rand::thread_rng;

use bellman::groth16::{
batch, create_random_proof, generate_random_parameters, prepare_verifying_key, verify_proof,
};

#[path = "../tests/common/mod.rs"]
mod common;

use common::*;

fn bench_batch_verify(c: &mut Criterion) {
let mut group = c.benchmark_group("Batch Verification");

for &n in [8usize, 16, 24, 32, 40, 48, 56, 64].iter() {
group.throughput(Throughput::Elements(n as u64));

let mut rng = thread_rng();

// Generate the MiMC round constants
let constants = (0..MIMC_ROUNDS)
.map(|_| bls12_381::Scalar::random(&mut rng))
.collect::<Vec<_>>();

// Create parameters for our circuit
let params = {
let c = MiMCDemo {
xl: None,
xr: None,
constants: &constants,
};

generate_random_parameters::<Bls12, _, _>(c, &mut rng).unwrap()
};

// Prepare the verification key (for proof verification)
let pvk = prepare_verifying_key(&params.vk);

let proofs = {
std::iter::repeat_with(|| {
// Generate a random preimage and compute the image
let xl = bls12_381::Scalar::random(&mut rng);
let xr = bls12_381::Scalar::random(&mut rng);
let image = mimc(xl, xr, &constants);

// Create an instance of our circuit (with the
// witness)
let c = MiMCDemo {
xl: Some(xl),
xr: Some(xr),
constants: &constants,
};

// Create a groth16 proof with our parameters.
let proof = create_random_proof(c, &params, &mut rng).unwrap();

(proof, image)
})
}
.take(n)
.collect::<Vec<_>>();

group.bench_with_input(
BenchmarkId::new("Unbatched verification", n),
&proofs,
|b, proofs| {
b.iter(|| {
for (proof, input) in proofs.iter() {
let _ = verify_proof(&pvk, &proof, &[*input]);
}
})
},
);

group.bench_with_input(
BenchmarkId::new("Batched verification", n),
&proofs,
|b, proofs| {
b.iter(|| {
let mut batch = batch::Verifier::new();
for (proof, input) in proofs.iter() {
batch.queue((proof.clone(), vec![*input]));
}
batch.verify(&mut rng, &params.vk)
})
},
);
}

group.finish();
}

criterion_group!(benches, bench_batch_verify);
criterion_main!(benches);
2 changes: 1 addition & 1 deletion src/groth16/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ pub use self::generator::*;
pub use self::prover::*;
pub use self::verifier::*;

#[derive(Clone)]
#[derive(Clone, Debug)]
pub struct Proof<E: Engine> {
pub a: E::G1Affine,
pub b: E::G2Affine,
Expand Down
2 changes: 1 addition & 1 deletion src/groth16/tests/dummy_engine.rs
Original file line number Diff line number Diff line change
Expand Up @@ -342,7 +342,7 @@ impl Engine for DummyEngine {
type Gt = Fr;

fn pairing(p: &Self::G1Affine, q: &Self::G2Affine) -> Self::Gt {
Self::multi_miller_loop(&[(p, &(*q).into())]).final_exponentiation()
Self::multi_miller_loop(&[(p, &(*q))]).final_exponentiation()
}
}

Expand Down
2 changes: 2 additions & 0 deletions src/groth16/verifier.rs
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@ use super::{PreparedVerifyingKey, Proof, VerifyingKey};

use crate::VerificationError;

pub mod batch;

pub fn prepare_verifying_key<E: MultiMillerLoop>(vk: &VerifyingKey<E>) -> PreparedVerifyingKey<E> {
let gamma = vk.gamma_g2.neg();
let delta = vk.delta_g2.neg();
Expand Down
170 changes: 170 additions & 0 deletions src/groth16/verifier/batch.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,170 @@
//! Performs batch Groth16 proof verification.
//!
//! Batch verification asks whether *all* proofs in some set are valid,
//! rather than asking whether *each* of them is valid. This allows sharing
//! computations among all proof verifications, performing less work overall
//! at the cost of higher latency (the entire batch must complete), complexity of
//! caller code (which must assemble a batch of proofs across work-items),
//! and loss of the ability to easily pinpoint failing proofs.
//!
//! This batch verification implementation is non-adaptive, in the sense that it
//! assumes that all the proofs in the batch are verifiable by the same
//! `VerifyingKey`. The reason is that if you have different proof statements,
//! you need to specify which statement you are proving, which means that you
//! need to refer to or lookup a particular `VerifyingKey`. In practice, with
//! large enough batches, it's manageable and not much worse performance-wise to
//! keep batches of each statement type, vs one large adaptive batch.

use std::ops::AddAssign;

use ff::Field;
use group::{Curve, Group};
use pairing::{MillerLoopResult, MultiMillerLoop};
use rand_core::{CryptoRng, RngCore};

use crate::{
groth16::{PreparedVerifyingKey, Proof, VerifyingKey},
VerificationError,
};

/// A batch verification item.
///
/// This struct exists to allow batch processing to be decoupled from the
/// lifetime of the message. This is useful when using the batch verification
/// API in an async context.
#[derive(Clone, Debug)]
pub struct Item<E: MultiMillerLoop> {
str4d marked this conversation as resolved.
Show resolved Hide resolved
proof: Proof<E>,
inputs: Vec<E::Fr>,
}

impl<E: MultiMillerLoop> From<(&Proof<E>, &[E::Fr])> for Item<E> {
fn from((proof, inputs): (&Proof<E>, &[E::Fr])) -> Self {
(proof.clone(), inputs.to_owned()).into()
}
}

impl<E: MultiMillerLoop> From<(Proof<E>, Vec<E::Fr>)> for Item<E> {
fn from((proof, inputs): (Proof<E>, Vec<E::Fr>)) -> Self {
Self { proof, inputs }
}
}

impl<E: MultiMillerLoop> Item<E> {
/// Perform non-batched verification of this `Item`.
///
/// This is useful (in combination with `Item::clone`) for implementing
/// fallback logic when batch verification fails.
pub fn verify_single(self, pvk: &PreparedVerifyingKey<E>) -> Result<(), VerificationError> {
super::verify_proof(pvk, &self.proof, &self.inputs)
}
}

/// A batch verification context.
///
/// In practice, you would create a batch verifier for each proof statement
/// requiring the same `VerifyingKey`.
#[derive(Debug)]
pub struct Verifier<E: MultiMillerLoop> {
str4d marked this conversation as resolved.
Show resolved Hide resolved
items: Vec<Item<E>>,
}

// Need to impl Default by hand to avoid a derived E: Default bound
impl<E: MultiMillerLoop> Default for Verifier<E> {
fn default() -> Self {
Self { items: Vec::new() }
}
}

impl<E: MultiMillerLoop> Verifier<E>
where
E::G1: AddAssign<E::G1>,
{
/// Construct a new batch verifier.
pub fn new() -> Self {
Self::default()
}

/// Queue a (proof, inputs) tuple for verification.
pub fn queue<I: Into<Item<E>>>(&mut self, item: I) {
self.items.push(item.into())
}

/// Perform batch verification with a particular `VerifyingKey`, returning
/// `Ok(())` if all proofs were verified and `VerificationError` otherwise.
#[allow(non_snake_case)]
pub fn verify<R: RngCore + CryptoRng>(
self,
mut rng: R,
vk: &VerifyingKey<E>,
) -> Result<(), VerificationError> {
if self
.items
.iter()
.any(|Item { inputs, .. }| inputs.len() + 1 != vk.ic.len())
{
return Err(VerificationError::InvalidVerifyingKey);
}

let mut ml_terms = Vec::<(E::G1Affine, E::G2Prepared)>::new();
let mut acc_Gammas = vec![E::Fr::zero(); vk.ic.len()];
let mut acc_Delta = E::G1::identity();
let mut acc_Y = E::Fr::zero();

for Item { proof, inputs } in self.items.into_iter() {
// The spec is explicit that z != 0. Field::random is defined to
// return a uniformly-random field element (which may be 0), so we
// loop until it's not, avoiding needing an assert or throwing an
// error through no fault of the batch items. This will likely never
// actually loop, but handles the edge case.
let z = loop {
let z = E::Fr::random(&mut rng);
if !z.is_zero() {
break z;
}
};

ml_terms.push(((proof.a * &z).into(), (-proof.b).into()));

acc_Gammas[0] += &z; // a_0 is implicitly set to 1
for (a_i, acc_Gamma_i) in Iterator::zip(inputs.iter(), acc_Gammas.iter_mut().skip(1)) {
*acc_Gamma_i += &(z * a_i);
}
acc_Delta += proof.c * &z;
acc_Y += &z;
}

ml_terms.push((acc_Delta.to_affine(), E::G2Prepared::from(vk.delta_g2)));

let Psi = vk
.ic
.iter()
.zip(acc_Gammas.iter())
.map(|(&Psi_i, acc_Gamma_i)| Psi_i * acc_Gamma_i)
.sum();
Comment on lines +139 to +144
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Constant factor improvement, but this can be done as a multiexp instead.


ml_terms.push((E::G1Affine::from(Psi), E::G2Prepared::from(vk.gamma_g2)));

// Covers the [acc_Y]⋅e(alpha_g1, beta_g2) component
//
// The multiplication by acc_Y is expensive -- it involves
// exponentiating by acc_Y because the result of the pairing is an
// element of a multiplicative subgroup of a large extension field.
// Instead, we add
// ([acc_Y]⋅alpha_g1, beta_g2)
// to our Miller loop terms because
// [acc_Y]⋅e(alpha_g1, beta_g2) = e([acc_Y]⋅alpha_g1, beta_g2)
ml_terms.push((
E::G1Affine::from(vk.alpha_g1 * &acc_Y),
E::G2Prepared::from(vk.beta_g2),
));

let ml_terms = ml_terms.iter().map(|(a, b)| (a, b)).collect::<Vec<_>>();
str4d marked this conversation as resolved.
Show resolved Hide resolved

if E::multi_miller_loop(&ml_terms[..]).final_exponentiation() == E::Gt::identity() {
Ok(())
} else {
Err(VerificationError::InvalidProof)
}
}
}
Loading