Skip to content

Pytorch version of VidLanKD: Improving Language Understanding viaVideo-Distilled Knowledge Transfer (NeurIPS 2021))

Notifications You must be signed in to change notification settings

zinengtang/VidLanKD

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

75 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

VidLanKD

Implementation of VidLanKD: Improving Language Understanding via Video-Distilled Knowledge Transfer by Zineng Tang, Jaemin Cho, Hao Tan, Mohit Bansal.

Setup

# Create python environment (optional)
conda create -n vidlankd python=3.7

# Install python dependencies
pip install -r requirements.txt

To speed up the training, we use mixed precision with Apex.

git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Pretrained Models

(1. Teacher model (BERT-12L-768H) 2. student mode (BERT-12L-768H, KD-NST)) Gdrive link We also updated small models.

Creat directory and put the models under 'snap/vlm' or custom name

Dataset Preparation

Text Dataset

We provide scripts to obtain datasets "wiki103" and "wiki".

Wiki103, a seleted subset of English Wikipedia.

bash data/wiki103/get_data_cased.bash

English Wikipedia. The scripts are modified from XLM.

bash data/wiki/get_data_cased.bash en

Video Dataset

Howto100m where you can download official captions and videos features.

Video Features Extraction Code

We follow Howtoo100m to use its feature extractor 2D+3D

  • We extracted our 2D-level video features with ResNet152 from torchvision.
  • We extracted our 3D-level video features with 3D-RexNext.

Downstream tasks

GLUE dataset

Download dataset

wget https://raw.githubusercontent.com/huggingface/transformers/master/utils/download_glue_data.py
python download_glue_data.py --data_dir data/glue --tasks all

Training

Teacher model pre-training

# bash scripts/small_vlm_howto100m.bash $GPUS #teacher_SNAP_PATH
bash scripts/small_vlm_howto100m.bash 0,1,2,3 howto100m_bert_small_vokenhinge
# bash scripts/base_vlm_howto100m.bash $GPUS #teacher_SNAP_PATH
bash scripts/base_vlm_howto100m.bash 0,1,2,3 howto100m_bert_base_vokenhinge

Knowledge transfer to student model

# bash scripts/small_vlm_wiki103.bash $GPUS #teacher_SNAP_PATH #student_SNAP_PATH
bash scripts/small_vlm_wiki103.bash 0,1,2,3 howto100m_bert_small_vokenhinge/checkpoint-epoch0019 wiki103_bert_small_vokenmmd
# bash scripts/base_vlm_wiki.bash $GPUS #teacher_SNAP_PATH #student_SNAP_PATH
bash scripts/base_vlm_wiki.bash 0,1,2,3 howto100m_bert_base_vokenhinge/checkpoint-epoch0019 wiki_bert_base_vokenmmd

Baseline BERT model

bash scripts/base_wiki.bash 0,1,2,3 wiki_bert_base

Finetuning on GLUE tasks

# bash scripts/run_glue_at_epoch.bash $GPUS $NumTrainEpochs $SNAP_PATH                        
bash scripts/run_glue_at_epoch.bash 0,1,2,3 3 snap/vlm/wiki103_bert_small_vokenmmd/checkpoint-epoch0019                  

Acknowledgements

Part of the code is built based on vokenization, huggingface transformers, and facebook faiss.

About

Pytorch version of VidLanKD: Improving Language Understanding viaVideo-Distilled Knowledge Transfer (NeurIPS 2021))

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published