Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support yolov5m and yolov5l models #7

Merged
merged 4 commits into from
Dec 1, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion hubconf.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# Optional list of dependencies required by the package
dependencies = ['yaml', 'torch', 'torchvision']

from models import yolov5s as yolov5
from models import yolov5
from models import yolov5_onnx
7 changes: 4 additions & 3 deletions models/__init__.py
Original file line number Diff line number Diff line change
@@ -1,20 +1,21 @@
from torch import nn

from .common import Conv
from .yolo import yolov5s
from .yolo import yolov5

from utils.activations import Hardswish


def yolov5_onnx(
cfg_path='yolov5s.yaml',
pretrained=False,
progress=True,
num_classes=80,
**kwargs,
):

model = yolov5s(pretrained=pretrained, progress=progress,
num_classes=num_classes, **kwargs)
model = yolov5(cfg_path=cfg_path, pretrained=pretrained, progress=progress,
num_classes=num_classes, **kwargs)
for m in model.modules():
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
if isinstance(m, Conv) and isinstance(m.act, nn.Hardswish):
Expand Down
4 changes: 2 additions & 2 deletions models/backbone.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# Modified from ultralytics/yolov5 by Zhiqiang Wang
import pathlib
from pathlib import Path
from collections import OrderedDict

import yaml
Expand Down Expand Up @@ -189,7 +189,7 @@ def forward(self, x):


def darknet(cfg_path='yolov5s.yaml', pretrained=False):
cfg_path = pathlib.Path(__file__).parent.absolute().joinpath(cfg_path)
cfg_path = Path(__file__).parent.absolute().joinpath(cfg_path)
with open(cfg_path) as f:
model_dict = yaml.load(f, Loader=yaml.FullLoader)

Expand Down
16 changes: 9 additions & 7 deletions models/yolo.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# Modified by Zhiqiang Wang ([email protected])
import warnings
from pathlib import Path

import torch
from torch import nn, Tensor
Expand Down Expand Up @@ -151,13 +152,14 @@ def forward(


model_urls = {
'yolov5s':
'https://github.com/zhiqwang/yolov5-rt-stack/releases/download/v0.2.1/yolov5s.pt',
'yolov5s': 'https://github.com/zhiqwang/yolov5-rt-stack/releases/download/v0.2.1/yolov5s.pt',
'yolov5m': 'https://github.com/zhiqwang/yolov5-rt-stack/releases/download/v0.2.4/yolov5m.pt',
'yolov5l': 'https://github.com/zhiqwang/yolov5-rt-stack/releases/download/v0.2.4/yolov5l.pt',
}


def yolov5s(pretrained=False, progress=True,
num_classes=80, pretrained_backbone=True, **kwargs):
def yolov5(cfg_path='yolov5s.yaml', pretrained=False, progress=True,
num_classes=80, pretrained_backbone=True, **kwargs):
"""
Constructs a YOLO model.

Expand Down Expand Up @@ -185,7 +187,7 @@ def yolov5s(pretrained=False, progress=True,

Example::

>>> model = yolov5s(pretrained=True)
>>> model = yolov5(pretrained=True)
>>> model.eval()
>>> x = [torch.rand(3, 416, 320), torch.rand(3, 480, 352)]
>>> predictions = model(x)
Expand All @@ -198,9 +200,9 @@ def yolov5s(pretrained=False, progress=True,
# no need to download the backbone if pretrained is set
pretrained_backbone = False
# skip P2 because it generates too many anchors (according to their paper)
backbone, anchor_grids = darknet(cfg_path='yolov5s.yaml', pretrained=pretrained_backbone)
backbone, anchor_grids = darknet(cfg_path=cfg_path, pretrained=pretrained_backbone)
model = YOLO(backbone, num_classes, anchor_grids, **kwargs)
if pretrained:
state_dict = load_state_dict_from_url(model_urls['yolov5s'], progress=progress)
state_dict = load_state_dict_from_url(model_urls[Path(cfg_path).stem], progress=progress)
model.load_state_dict(state_dict)
return model
48 changes: 48 additions & 0 deletions models/yolov5l.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
# parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple

# anchors
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32

# YOLOv5 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Focus, [64, 3]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, BottleneckCSP, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 9, BottleneckCSP, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, BottleneckCSP, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 1, SPP, [1024, [5, 9, 13]]],
[-1, 3, BottleneckCSP, [1024, False]], # 9
]

# YOLOv5 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, BottleneckCSP, [512, False]], # 13

[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)

[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)

[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)

[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
48 changes: 48 additions & 0 deletions models/yolov5m.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
# parameters
nc: 80 # number of classes
depth_multiple: 0.67 # model depth multiple
width_multiple: 0.75 # layer channel multiple

# anchors
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32

# YOLOv5 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Focus, [64, 3]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, BottleneckCSP, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 9, BottleneckCSP, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, BottleneckCSP, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 1, SPP, [1024, [5, 9, 13]]],
[-1, 3, BottleneckCSP, [1024, False]], # 9
]

# YOLOv5 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, BottleneckCSP, [512, False]], # 13

[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)

[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)

[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)

[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
6 changes: 6 additions & 0 deletions utils/updated_checkpoint.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,13 @@


def update_ultralytics(model, checkpoint_path_ultralytics):
"""
It's limited that ultralytics saved model must load in their root path.
So a very important thing is to desensitize the path befor updating ultralytics's trained model as follows:

>>> checkpoints_ = torch.load(weights, map_location='cpu')['model']
>>> torch.save(checkpoints_.state_dict(), './checkpoints/yolov5/yolov5s_ultralytics.pt')
"""
state_dict = torch.load(checkpoint_path_ultralytics, map_location="cpu")

# Update body features
Expand Down