Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Shiquan as co-authors for great contributions on TRT #258

Merged
merged 5 commits into from
Dec 27, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 11 additions & 5 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,9 +24,9 @@ ______________________________________________________________________
[![pre-commit.ci status](https://results.pre-commit.ci/badge/github/zhiqwang/yolov5-rt-stack/main.svg)](https://results.pre-commit.ci/latest/github/zhiqwang/yolov5-rt-stack/main)

[![codecov](https://codecov.io/gh/zhiqwang/yolov5-rt-stack/branch/main/graph/badge.svg?token=1GX96EA72Y)](https://codecov.io/gh/zhiqwang/yolov5-rt-stack)
[![license](https://img.shields.io/github/license/zhiqwang/yolov5-rt-stack?color=brightgreen)](LICENSE)
[![Slack](https://img.shields.io/badge/slack-chat-green.svg?logo=slack)](https://join.slack.com/t/yolort/shared_invite/zt-mqwc7235-940aAh8IaKYeWclrJx10SA)
[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg)](https://github.com/zhiqwang/yolov5-rt-stack/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22)
[![license](https://img.shields.io/github/license/zhiqwang/yolov5-rt-stack?color=dfd)](LICENSE)
[![Slack](https://img.shields.io/badge/slack-chat-aff.svg?logo=slack)](https://join.slack.com/t/yolort/shared_invite/zt-mqwc7235-940aAh8IaKYeWclrJx10SA)
[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-pink.svg)](https://github.com/zhiqwang/yolov5-rt-stack/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22)

______________________________________________________________________

Expand All @@ -46,7 +46,9 @@ ______________________________________________________________________

## 🆕 What's New

- *Sep. 24, 2021*. Add `ONNXRuntime` C++ interface example. Thanks to [itsnine](https://github.com/itsnine).
- *Dec. 27, 2021*. Add `TensorRT` C++ interface example. Thanks to [Shiquan](https://github.com/ShiquanYu).
- *Dec. 25, 2021*. Support exporting to `TensorRT`, and inferencing with `TensorRT` Python interface.
- *Sep. 24, 2021*. Add `ONNXRuntime` C++ interface example. Thanks to [Fidan](https://github.com/itsnine).
- *Feb. 5, 2021*. Add `TVM` compile and inference notebooks.
- *Nov. 21, 2020*. Add graph visualization tools.
- *Nov. 17, 2020*. Support exporting to `ONNX`, and inferencing with `ONNXRuntime` Python interface.
Expand Down Expand Up @@ -135,6 +137,10 @@ We provide a [notebook](notebooks/inference-pytorch-export-libtorch.ipynb) to de

On the `ONNXRuntime` front you can use the [C++ example](deployment/onnxruntime), and we also provide a tutorial [export-onnx-inference-onnxruntime](notebooks/export-onnx-inference-onnxruntime.ipynb) for using the `ONNXRuntime`.

### Inference on TensorRT backend

On the `TensorRT` front you can use the [C++ example](deployment/tensorrt), and we also provide a tutorial [onnx-graphsurgeon-inference-tensorrt](notebooks/onnx-graphsurgeon-inference-tensorrt.ipynb) for using the `TensorRT`.

## 🎨 Model Graph Visualization

Now, `yolort` can draw the model graph directly, checkout our [model-graph-visualization](notebooks/model-graph-visualization.ipynb) notebook to see how to use and visualize the model graph.
Expand All @@ -152,7 +158,7 @@ If you use yolort in your publication, please cite it by using the following Bib

```bibtex
@Misc{yolort2021,
author = {Zhiqiang Wang, Fidan Kharrasov},
author = {Zhiqiang Wang, Shiquan Yu, Fidan Kharrasov},
title = {yolort: A runtime stack for object detection on specialized accelerators},
howpublished = {\url{https://github.com/zhiqwang/yolov5-rt-stack}},
year = {2021}
Expand Down
62 changes: 54 additions & 8 deletions deployment/tensorrt/README.md
Original file line number Diff line number Diff line change
@@ -1,33 +1,79 @@
# TensorRT Inference

The TensorRT inference for `yolort`, support GPU only.
The TensorRT inference for `yolort`, support CUDA only.

## Dependencies

- TensorRT 8.x
- TensorRT 8.0 +

## Usage

1. Create build director and cmake config.

```bash
mkdir -p build/ && cd build/
cmake .. -DTENSORRT_DIR=${your_trt_install_director}
cmake .. -DTENSORRT_DIR={path/to/your/trt/install/director}
```

1. Build project

```bash
make
cmake --build . -j4
```

1. Export your custom model to ONNX(see [onnx-graphsurgeon-inference-tensorrt](https://github.com/zhiqwang/yolov5-rt-stack/blob/main/notebooks/onnx-graphsurgeon-inference-tensorrt.ipynb)).
1. Export your custom model to ONNX

Here is a small demo to surgeon the YOLOv5 ONNX model and then export to TensorRT engine. For details see out our [tutorial for deploying yolort on TensorRT](https://zhiqwang.com/yolov5-rt-stack/notebooks/onnx-graphsurgeon-inference-tensorrt.html).

- Set the super parameters

```python
model_path = "https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5n6.pt"
checkpoint_path = attempt_download(model_path)
onnx_path = "yolov5n6.onnx"
engine_path = "yolov5n6.engine"

score_thresh = 0.4
iou_thresh = 0.45
detections_per_img = 100
```

- Surgeon the yolov5 ONNX models

```python
from yolort.runtime.yolo_graphsurgeon import YOLOGraphSurgeon

yolo_gs = YOLOGraphSurgeon(
checkpoint_path,
version="r6.0",
enable_dynamic=False,
)

yolo_gs.register_nms(
score_thresh=score_thresh,
nms_thresh=iou_thresh,
detections_per_img=detections_per_img,
)

# Export the ONNX model
yolo_gs.save(onnx_path)
```

- Build the TensorRT engine

```python
from yolort.runtime.trt_helper import EngineBuilder

engine_builder = EngineBuilder()
engine_builder.create_network(onnx_path)
engine_builder.create_engine(engine_path, precision="fp32")
```

1. Now, you can infer your own images.

```bash
./yolort_trt [--image ../../../test/assets/zidane.jpg]
[--model_path ../../../notebooks/yolov5s.onnx]
[--class_names ../../../notebooks/assets/coco.names]
[--fp16] # Enable it if your GPU support fp16 inference
[--model_path ../../../notebooks/yolov5s.onnx]
[--class_names ../../../notebooks/assets/coco.names]
[--fp16] # Enable it if your GPU support fp16 inference
```