Skip to content

DCT (discrete cosine transform) functions for pytorch

License

Notifications You must be signed in to change notification settings

zh217/torch-dct

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DCT (Discrete Cosine Transform) for pytorch

Build Status codecov PyPI version PyPI version PyPI status GitHub license

This library implements DCT in terms of the built-in FFT operations in pytorch so that back propagation works through it, on both CPU and GPU. For more information on DCT and the algorithms used here, see Wikipedia and the paper by J. Makhoul. This StackExchange article might also be helpful.

The following are currently implemented:

  • 1-D DCT-I and its inverse (which is a scaled DCT-I)
  • 1-D DCT-II and its inverse (which is a scaled DCT-III)
  • 2-D DCT-II and its inverse (which is a scaled DCT-III)
  • 3-D DCT-II and its inverse (which is a scaled DCT-III)

Install

pip install torch-dct

Requires torch>=0.4.1 (lower versions are probably OK but I haven't tested them).

You can run test by getting the source and run pytest. To run the test you also need scipy installed.

Usage

import torch
import torch_dct as dct

x = torch.randn(200)
X = dct.dct(x)   # DCT-II done through the last dimension
y = dct.idct(X)  # scaled DCT-III done through the last dimension
assert (torch.abs(x - y)).sum() < 1e-10  # x == y within numerical tolerance

dct.dct1 and dct.idct1 are for DCT-I and its inverse. The usage is the same.

Just replace dct and idct by dct_2d, dct_3d, idct_2d, idct_3d, etc to get the multidimensional versions.

About

DCT (discrete cosine transform) functions for pytorch

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages