Code for Improved Variational Bayesian Phylogenetic Inference with Normalizing Flows
Please consider citing the paper when any of the material is used for your research.
@inproceedings{VBPI-NF,
author = {Zhang, Cheng},
booktitle = {Advances in Neural Information Processing Systems},
editor = {H. Larochelle and M. Ranzato and R. Hadsell and M. F. Balcan and H. Lin},
pages = {18760--18771},
publisher = {Curran Associates, Inc.},
title = {Improved Variational Bayesian Phylogenetic Inference with Normalizing Flows},
url = {https://proceedings.neurips.cc/paper/2020/file/d96409bf894217686ba124d7356686c9-Paper.pdf},
volume = {33},
year = {2020}
}
Use command line
python main.py --dataset DS1 --flow_type identity --empFreq
python main.py --dataset DS1 --flow_type planar --Lnf 16 --stepszBranch 0.0003 --empFreq
python main.py --dataset DS1 --flow_type realnvp --Lnf 5 --stepszBranch 0.0001 --empFreq
You can also load the data, set up and train the model on your own. See more details in main.py.