Skip to content

Visualize topological features of high dimensional datasets

Notifications You must be signed in to change notification settings

zasexton/k-nerve

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

41 Commits
 
 
 
 
 
 

Repository files navigation

k-nerve

Input: n-dimensional dataset (ex: numpy array of floats) + covering dimension = k ( any integer between 1 and n)

Output: k-dimensional simplicial complex (k <= n )

Visualization: 2-skeleton of k-dimensional simplicial complex

Dependencies

  • numpy
  • pandas
  • sklearn.decomposition.PCA
  • sklearn.cluster.DBSCAN
  • json
  • d3.js

Examples

Iris Dataset

Data: http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html

iris_2_400_1

2-nerve of Iris Dataset

Click here for interactive version.

Breast Cancer Dataset

Data: http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html

breast_cancer_2_400_065

2-nerve of Breast Cancer Dataset

Click here for interactive version

Diabetes Dataset

Data: http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html

diabetes_2_225_065

2-nerve of Diabetes data

Click here for interactive version.

diabetes_3_225_04

3-nerve of Diabetes data

Click here for interactive version.

Wine Quality Dataset

Data: https://archive.ics.uci.edu/ml/datasets/Wine+Quality

redwine_2_400_055

2-nerve of redwine data

Click here for interactive version.

About

Visualize topological features of high dimensional datasets

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published