This repo is based on 🤗 Transfomers implementation of the T5 model and BERT. T5 data processing pipeline is used from the original T5 repository for pre-training (span corruption, prefix-lm) and fine-tuning. BERT data processing pipeline is used from Megatron-LM.
Multi-gpu and multi-node training with Horovod is supported. APEX/torch.cuda.amp is used for FP16 and mixed-precision training. Sparse Attention from DeepSpeed is used.
BERT model supports such additional features as pre-attention layer norm, sparse attention, relative position and rotary embeddings.
T5 and BERT pre-training is implemented in run_(model_type)_pretraining.py
scripts.
Training tools, such as Trainer, are in lm_experiments_tools
package.
There are two main parts in the repository:
lm_experiments_tools
module- training scripts (like bert/t5 pretraining) that use
lm_experiments_tools
lm_experiments_tools
include Trainer with multi-gpu/node with Horovod and APEX torch.cuda.amp FP16 for models
compatible with HF interface. Most of the scripts in the repo use Trainer from lm_experiments_tools
.
note: install torch and horovod according to your setup before
lm_experiments_tools
installation.
pip install -e .
This command will install lm_experiments_tools
with only required packages for Trainer and tools.
lm_experiments_tools
Trainer supports gradient accumulation, logging to tensorboard, saving the best models
based on metrics, custom metrics and data transformations support.
Full requirements for all experiments are specified in requirements.txt. Install requirements after cloning the repo:
grep -v "^#" requirements.txt | xargs -n 1 -L 1 pip install
Currently, T5 text-to-text installation might install tf2.8.0+, downgrade TF related packages with:
pip install tensorflow==2.6.0 tensorflow-estimator==2.6.0 tensorflow-text==2.6.0 tensorflow-io-gcs-filesystem==0.21.0 keras==2.6.0
todo: reorder reqs in requirements.txt.
Depending on your setup just pip install horovod==0.24.2
might work.
Building Horovod with NCCL for PyTorch:
HOROVOD_NCCL_HOME=... HOROVOD_GPU_OPERATIONS=NCCL HOROVOD_WITH_PYTORCH=1 pip install --no-cache-dir horovod[pytorch]==0.24.2 --no-binary=horovod
check installation with
horovodrun --check-build
For further details check Horovod documentation: https://horovod.readthedocs.io/en/stable/install_include.html
Install APEX https://github.com/NVIDIA/apex#quick-start
git clone https://github.com/NVIDIA/apex
cd apex
# most recent commits may fail to build
git checkout 2386a912164b0c5cfcd8be7a2b890fbac5607c82
# if pip >= 23.1 (ref: https://pip.pypa.io/en/stable/news/#v23-1) which supports multiple `--config-settings` with the same key...
pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" ./
# otherwise
pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --global-option="--cpp_ext" --global-option="--cuda_ext" ./
apex.amp is moved to torch.cuda.amp NVIDIA/apex#818, but:
speed: APEX O1
< torch.cuda.amp
< APEX O2
resources (unordered):
- https://pytorch.org/tutorials/recipes/recipes/amp_recipe.html
- https://pytorch.org/docs/stable/notes/amp_examples.html
- https://spell.ml/blog/mixed-precision-training-with-pytorch-Xuk7YBEAACAASJam
- https://pytorch.org/blog/accelerating-training-on-nvidia-gpus-with-pytorch-automatic-mixed-precision/
- horovod/horovod#1089
- NVIDIA/apex#818
DeepSpeed Sparse attention supports only GPUs with compute compatibility >= 7 (V100, T4, A100), CUDA 10.1, 10.2, 11.0, or 11.1 and runs only in FP16 mode (as of DeepSpeed 0.6.0).
PyTorch>=1.7.1,<=1.10.1 wheels with CUDA 10.2/11.0/11.1 from pytorch.org can be used. However, using Sparse Ops with CUDA 11.1 PyTorch wheels would require CUDA 11.3/11.4 to be installed on the system. Sparse Ops could also be used with PyTorch==1.12.1 CUDA 11.3 wheels, but running DeepSpeed Sparse Ops tests would require modifying them as they check for Torch CUDA version <=11.1. DeepSpeed fork for Triton 1.1.1 already has updated tests.
Triton 1.0.0 and 1.1.1 requires python<=3.9.
pip install triton==1.0.0
DS_BUILD_SPARSE_ATTN=1 pip install deepspeed==0.6.0 --global-option="build_ext" --global-option="-j8" --no-cache
and check installation with
ds_report
Triton 1.1.1 brings x2 speed-up to sparse operations on A100, but DeepSpeed (0.6.5) currently supports only triton 1.0.0. DeepSpeed fork with triton 1.1.1 support could be used in the cases where such speed-up is needed:
pip install triton==1.1.1
git clone https://github.com/yurakuratov/DeepSpeed.git
cd DeepSpeed
DS_BUILD_SPARSE_ATTN=1 pip install -e . --global-option="build_ext" --global-option="-j8" --no-cache
and run sparse ops tests with
cd tests/unit
pytest -v test_sparse_attention.py
Data preprocessing readme.
Python script: run_bert_pretraining.py
The Trainer argument --fp16
will enable torch.cuda.amp FP16 mixed precision. Adding --apex_opt_lvl O1
or --apex_opt_lvl O2
will enable mixed precision with APEX FP16. Check APEX docs for the details https://nvidia.github.io/apex/amp.html#opt-levels.
Adafactor was used to train such models as T5, BigBird, PaLM and others. Adafactor lowers required memory by keeping moving average of per-parameter second moments factorized.
Adafactor parameters:
scale_parameter
- lr is scaled by root mean square of parameter: lr * RMS(p)relative_step
- lr = 1/sqrt(step)warmup_init
- linear warm up from 1e-06 to 0.01 at 10k steps, works only in combination withrelative_step
Adafactor can be used with constant lr / lr schedulers. In this case, relative_step
and warmup_init
should be set to False. scale_parameter
is does not depend on learning rate schedules and can be used with external learning rates.
example for pretraining scripts:
--optimizer Adafactor --lr 1e-03 --scale_parameter \
--lr_scheduler constant_with_warmup --num_warmup_steps 10000
e.g. for DP config
"optimizer": "Adafactor",
"optimizer_parameters": {
"lr": 1e-03,
"weight_decay": 0.0,
"scale_parameter": true,
"relative_step": false,
"warmup_init": false
}
BERT model training supports sparse attentions from DeepSpeed.
DeepSpeed Sparse attention docpage -- https://www.deepspeed.ai/tutorials/sparse-attention.
SparseAttention parameters are passed to the model with HF model configuration file:
"sparse_config_cls": "deepspeed.ops.sparse_attention:BigBirdSparsityConfig",
"sparse_attention": {
"num_heads": 12,
"block": 16,
"different_layout_per_head": true,
"num_sliding_window_blocks": 1,
"num_global_blocks": 1,
"num_random_blocks": 1
}
You can also check bert_base_uncased-4L_sparse.json
config example in bert_configs
folder.
export CUDA_VISIBLE_DEVICES=4,5; horovodrun --gloo -np 2 python run_t5_pretraining.py \
--batch_size 32 \
--gradient_accumulation_steps 2 \
--save_interval 100000 \
--log_interval 500 \
--iters 1100000 \
--data_path ~/data/ThePile/Wikipedia/preprocessed_shards \
--model_path ./runs/small_wiki_bs_128 \
--input_seq_len 512 \
--target_seq_len 192 \
--lr 5e-05 \
--weight_decay 1e-05 \
--model_cfg ./t5configs/t5-small.json \
--model_cls modeling_t5:T5ForConditionalGeneration
and continue interrupted training
export CUDA_VISIBLE_DEVICES=0,1,2,3; horovodrun --gloo -np 4 python run_t5_pretraining.py \
--batch_size 8 \
--gradient_accumulation_steps 4 \
--save_interval 75000 \
--log_interval 500 \
--iters 1000000 --data_path ~/data/ThePile/Wikipedia/preprocessed_shards \
--model_path ./runs/base_wiki_enc_only_cdq_fixed_pos_wo_tanh \
--input_seq_len 512 \
--target_seq_len 192 \
--lr 5e-05 \
--weight_decay 1e-05 \
--model_cls modeling_t5:T5ForConditionalGeneration \
--model_cfg t5configs/t5-base-only-cdQ.json \
--init_checkpoint ./runs/base_wiki_enc_only_cdq_fixed_pos_wo_tanh/model_150000.pth
python -m deeppavlov train config_name
Gradient accumulation for dp:T5Text2TextModel
, e.g.:
batch_size
: 32sub_batch_size
: 16
means that full batch of size batch_size
will be splited on two sub-batches of size sub_batch_size
to accumulate their gradients.
Base configuration files are at ./dp_configs/glue
Fine-tuning and evaluation could be done with command:
export CUDA_VISIBLE_DEVICES=6; python evaluate_model.py single \
--pretrained-checkpoint ./runs/small_wiki_bs_128/model_1100000.pth \
--task-config ./dp_configs/glue \
--suffix bs_32/run_0 \
--train-batch-size 32
pretrained-checkpoint
is a path to pretrained checkpoint that would be trained and evaluated, task-config
is a
folder with DP configs (or single DP config), suffix
would be appended to a model path. Check evaluate_model.py
for
more details.
config: ./dp_configs/glue/glue_mixture.json
Use save_every_n_batches
parameter to save the model, set metrics: []
and evaluation_targets: []
in DP configs.
Train model on datasets mixture, check all available options in evaluate_model.py:train_mixture()
:
export CUDA_VISIBLE_DEVICES=1; python evaluate_model.py train-mixture \
--pretrained-checkpoint ./runs/small_wiki_bs_128/model_1100000.pth \
--task-config ./dp_configs/glue/glue_mixture.json \
--suffix bs_128 \
--train-batch-size 128
Evaluation for all checkpoints in checkpoint
folder, saves best checkpoints and evaluation results:
export CUDA_VISIBLE_DEVICES=0; python evaluate_model.py mixture \
--checkpoint ./runs/small_wiki_bs_128/glue/mixture/bs_128/ \
--pretrained-checkpoint ./runs/small_wiki_bs_128/model_1100000.pth \
--task-config ./dp_configs/glue \
--save-best
To get the best scores for all fine-tuned models and tasks run:
python evaluate_model.py collect-metrics \
--pretrained-checkpoint ./runs/small_wiki_bs_128/model_1100000.pth --clean > report.txt
use --clean
option to delete all models checkpoints except the best ones for each task.
TBD
QQP is currently not available via tfds: tensorflow/datasets#3031
to hot-fix this go to the source code of installed tfds tensorflow_datasets/text/glue.py:215
and replace QQP data url with https://dl.fbaipublicfiles.com/glue/data/QQP.zip
WMT configs could be found in ./dp_configs/wmt
Training with Horovod+DeepPavlov:
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7; horovodrun --gloo -np 8 python -m deeppavlov train ./dp_configs/ende_hvd.json
Multi-gpu training and evaluating with evaluate_model.py
(recommended):
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7; python evaluate_model.py single \
--pretrained-checkpoint ./runs/small_wiki_bs_128/model_1100000.pth \
--task-config ./dp_configs/wmt/ende.json \
--suffix bs_128_hvd/run_0 \
--train-batch-size 16 \
--lr 5e-05