Skip to content

Commit

Permalink
Add generation server scripts using HF accelerate and DS-inference (b…
Browse files Browse the repository at this point in the history
…igscience-workshop#328)

* first step towards making libs

* HF accelerate model

* refactor accelerate

* refactor DS inference

* refactor DS ZeRO

* make inference library

* cli

* server

* request

* remove MaxTokensError

* fix batch size error with DS inference server

* type fix

* add latency

* add latency

* add min_length to default kwargs

* str kwargs

* str kwargs

* fix comma

* add old scripts back

* move scripts

* drop data

* minor changes + add README

* update README

* drop nccl

* fix

* default values

* resolve issues

* handle keyboard interrupt

* remove caching

* use snapshot_download

* make server class

* fix snapshot download

Co-authored-by: Mayank Mishra <[email protected]>
  • Loading branch information
2 people authored and younesbelkada committed Sep 28, 2022
1 parent e6daa19 commit 4fa35e9
Show file tree
Hide file tree
Showing 21 changed files with 1,436 additions and 0 deletions.
File renamed without changes.
File renamed without changes.
107 changes: 107 additions & 0 deletions scripts/bloom-inference-server/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,107 @@
## Inference solutions for BLOOM 176B
We support HuggingFace accelerate and DeepSpeed Inference for generation.

Install required packages:

```shell
pip install fastapi uvicorn accelerate huggingface_hub>=0.9.0
```
To install [DeepSpeed](https://github.com/microsoft/DeepSpeed):
```shell
git clone https://github.com/microsoft/DeepSpeed
cd DeepSpeed
CFLAGS="-I$CONDA_PREFIX/include/" LDFLAGS="-L$CONDA_PREFIX/lib/" TORCH_CUDA_ARCH_LIST="7.0" DS_BUILD_CPU_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 pip install -e . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
```
To install [DeepSpeed-MII](https://github.com/microsoft/DeepSpeed-MII):
```shell
git clone https://github.com/microsoft/DeepSpeed-MII
cd DeepSpeed-MII
pip install .
```

All the provided scripts are tested on 8 A100 80GB GPUs for BLOOM 176B. These scripts might not work for other models or a different number of GPUs.
DS inference only supports fp16 for cli and server application. However, for benchmarking, it supports both fp16 and bf16. bf16 support will be added once DeepSpeed adds suitable CUDA kernels for these.

DS inference is deployed using the DeepSpeed MII library which requires the resharded checkpoints for 8 x Tensor Parallel. The HuggingFace checkpoints can be resharded and cached using the following command:
```shell
deepspeed --num_gpus 8 scripts/bloom-inference-server/cache_ds_checkpoints.py --model_name bigscience/bloom --dtype fp16 --save_mp_checkpoint_path <PATH TO DS CACHED MODEL>
```
Note: Running the above script will consume ~350 GB of disk space and will take some time (~30 minutes), depending on both the speed of your GPUs and storage.

Note: sometimes GPU memory is not freed when DS inference deployment is shutdown. You can free this memory by running:
```python
import mii
mii.terminate("ds_inference_grpc_server")
```
or alternatively, just doing a `killall python` in terminal.

#### BLOOM inference via command-line
This asks for generate_kwargs everytime.
Example: generate_kwargs =
```json
{"min_length": 100, "max_new_tokens": 100, "do_sample": false}
```

1. using HF accelerate
```shell
python scripts/bloom-inference-server/cli.py --model_name bigscience/bloom --dtype bf16 --deployment_framework hf_accelerate --generate_kwargs '{"min_length": 100, "max_new_tokens": 100, "do_sample": false}'
```

2. using DS inference
```shell
python scripts/bloom-inference-server/cli.py --model_name bigscience/bloom --dtype fp16 --deployment_framework ds_inference --save_mp_checkpoint_path <PATH TO DS CACHED MODEL> --generate_kwargs '{"min_length": 100, "max_new_tokens": 100, "do_sample": false}'
```

#### BLOOM server deployment
1. using HF accelerate
```shell
python scripts/bloom-inference-server/server.py --model_name bigscience/bloom --dtype bf16 --deployment_framework hf_accelerate --host <HOST ADDRESS> --port <PORT> --allowed_max_new_tokens 100
```

2. using DS inference
```shell
python scripts/bloom-inference-server/server.py --model_name bigscience/bloom --dtype fp16 --deployment_framework ds_inference --save_mp_checkpoint_path <PATH TO DS CACHED MODEL> --host <HOST ADDRESS> --port <PORT> --allowed_max_new_tokens 100
```

We provide an example [script](examples/server_request.py) to query the BLOOM server is provided. To run this script:
```shell
python scripts/bloom-inference-server/examples/server_request.py --host <HOST ADDRESS> --port <PORT>
```

#### Benchmark system for BLOOM inference
1. using HF accelerate
```shell
python scripts/bloom-inference-server/benchmark.py --model_name bigscience/bloom --dtype bf16 --deployment_framework hf_accelerate --benchmark_cycles 5
```

2. using DS inference
```shell
deepspeed --num_gpus 8 scripts/bloom-inference-server/benchmark.py --model_name bigscience/bloom --dtype fp16 --deployment_framework ds_inference --save_mp_checkpoint_path <PATH TO DS CACHED MODEL> --benchmark_cycles 5
```

3. using DS ZeRO
```shell
deepspeed --num_gpus 8 scripts/bloom-inference-server/benchmark.py --model_name bigscience/bloom --dtype bf16 --deployment_framework ds_zero --benchmark_cycles 5
```

Alternatively, the following shell script will benchmark different batch sizes for the model.
```shell
mkdir -p logs

for bs in {1,2,4,8,16,32,64,128}
do
python scripts/bloom-inference-server/benchmark.py --model_name bigscience/bloom --dtype bf16 --deployment_framework hf_accelerate --benchmark_cycles 5 --batch_size $bs 2>&1 | tee logs/hf-$bs.log

deepspeed --num_gpus 8 scripts/bloom-inference-server/benchmark.py --model_name bigscience/bloom --dtype fp16 --deployment_framework ds_inference --save_mp_checkpoint_path <PATH TO DS CACHED MODEL> --benchmark_cycles 5 --batch_size $bs 2>&1 | tee logs/ds-$bs.log

deepspeed --num_gpus 8 scripts/bloom-inference-server/benchmark.py --model_name bigscience/bloom --dtype bf16 --deployment_framework ds_zero --benchmark_cycles 5 --batch_size $bs 2>&1 | tee logs/ds-zero-$bs.log
done
```

The following will benchmark sequence length for batch size = 1 on DS inference.
```shell
for sq in {1,10,50,100,200,300,400,500,600,700,800,900,1000,1500,2000,2500,3000,3500,4000,4500,5000}
do
deepspeed --num_gpus 8 scripts/bloom-inference-server/benchmark.py --model_name bigscience/bloom --dtype fp16 --batch_size 1 --benchmark_cycles 5 --deployment_framework ds_inference --generate_kwargs '{"do_sample": false, "min_length": '$sq', "max_new_tokens": '$sq'}' 2>&1 | tee logs/ds_$sq.log
done
```
159 changes: 159 additions & 0 deletions scripts/bloom-inference-server/benchmark.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,159 @@
import argparse
import gc
import os

import deepspeed
import torch

import utils
from ds_inference import DSInferenceModel
from ds_zero import DSZeROModel
from hf_accelerate import HFAccelerateModel
from utils import (
BENCHMARK,
DS_INFERENCE,
DS_ZERO,
HF_ACCELERATE,
GenerateRequest,
Model,
get_argument_parser,
get_dummy_batch,
parse_generate_kwargs,
print_rank_n,
run_and_log_time
)


def benchmark_generation(model: Model,
request: GenerateRequest,
cycles: int = 5):
total_new_tokens_generated = 0
for _ in range(cycles):
response = model.generate(request)
total_new_tokens_generated += sum(
new_tokens for new_tokens in response.num_generated_tokens)
return total_new_tokens_generated


def get_benchmark_results(benchmark_time: float,
initialization_time: float,
total_new_tokens_generated: int,
batch_size: int,
cycles: int) -> str:
throughput = total_new_tokens_generated / benchmark_time
latency = benchmark_time / cycles
return f"""
*** Performance stats:
Throughput (including tokenization) = {throughput:.2f} tokens/sec
Throughput (including tokenization) = {1000 / throughput:.2f} msecs/token
Model loading time = {initialization_time:.2f} secs
Total tokens generated = {total_new_tokens_generated} with batch size = {batch_size}
Latency = {latency:.2f} secs
Model loading time + generation time per batch = {initialization_time + latency:.2f} secs
"""


def benchmark_end_to_end(args: argparse.Namespace,
model_class: Model,
zero_activated: bool = False) -> None:
model, initialization_time = run_and_log_time(
(model_class, {"args": args})
)

request = parse_generate_kwargs(
get_dummy_batch(args.batch_size),
args.generate_kwargs
)

print_rank_n(f"generate_kwargs = {args.generate_kwargs}")
print_rank_n(f"batch_size = {args.batch_size}")

# warmup is a must if measuring speed as it's when all the optimizations are performed
# e.g. on 8x80 a100 the first pass of 100 tokens takes 23sec, and the next one is 4secs
response = model.generate(request)

for i, (o, _) in zip(request.text, zip(response.text, response.num_generated_tokens)):
print_rank_n(f"{'-' * 60}\nin = {i}\nout = {o}\n")

if (args.benchmark_cycles > 0):
print_rank_n(f"*** Running benchmark")

torch.cuda.empty_cache()
gc.collect()

# warm up
model.generate(request)
torch.cuda.synchronize()

# benchmark
total_new_tokens_generated, benchmark_time = run_and_log_time(
(
benchmark_generation,
{
"model": model,
"request": request,
"cycles": args.benchmark_cycles
}
)
)

# with ZeRO every GPU is generating batch_size * sequence_length tokens
if (zero_activated):
world_size = int(os.getenv('WORLD_SIZE', '1'))
total_new_tokens_generated *= world_size

print_rank_n(
get_benchmark_results(
benchmark_time,
initialization_time,
total_new_tokens_generated,
args.batch_size,
args.benchmark_cycles
)
)


def get_args() -> argparse.Namespace:
parser = get_argument_parser()

group = parser.add_argument_group(title="launch config")
group.add_argument("--benchmark_cycles", type=int,
default=0, help="additionally run benchmark")
group.add_argument("--local_rank", required=False,
type=int, help="used by dist launchers")
group.add_argument("--batch_size", default=1, type=int, help="batch size")
group.add_argument("--cpu_offload", action="store_true",
help="whether to activate CPU offload for DS ZeRO")

args = utils.get_args(parser, BENCHMARK)

launched_with_deepspeed = args.deployment_framework in [
DS_INFERENCE, DS_ZERO]

if (not launched_with_deepspeed):
assert args.local_rank == None, "local_rank must be None if not launched with DeepSpeed"

if (args.cpu_offload):
assert args.deployment_framework == DS_ZERO, "cpu_offload only works with DS_ZeRO"

return args


def main() -> None:
args = get_args()

if (args.deployment_framework == HF_ACCELERATE):
benchmark_end_to_end(args, HFAccelerateModel)
elif (args.deployment_framework == DS_INFERENCE):
deepspeed.init_distributed("nccl")
benchmark_end_to_end(args, DSInferenceModel)
elif (args.deployment_framework == DS_ZERO):
deepspeed.init_distributed("nccl")
benchmark_end_to_end(args, DSZeROModel, zero_activated=True)
else:
raise ValueError(
f"Unknown deployment framework {args.deployment_framework}")


if (__name__ == "__main__"):
main()
67 changes: 67 additions & 0 deletions scripts/bloom-inference-server/cli.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
import argparse
import json
import sys

import utils
from ds_inference import DSInferenceGRPCServer
from hf_accelerate import HFAccelerateModel
from utils import CLI, DS_INFERENCE, HF_ACCELERATE, get_argument_parser, parse_generate_kwargs, print_rank_n


def get_args() -> argparse.Namespace:
parser = get_argument_parser()

group = parser.add_argument_group(title="launch config")
group.add_argument("--shutdown_command", required=False,
type=str, default="__shutdown__", help="This string will exit the script")

args = utils.get_args(parser, CLI)

return args


def main() -> None:
args = get_args()

if (args.deployment_framework == HF_ACCELERATE):
model = HFAccelerateModel(args)
elif (args.deployment_framework == DS_INFERENCE):
model = DSInferenceGRPCServer(args)
else:
raise ValueError(
f"Unknown deployment framework {args.deployment_framework}")

generate_kwargs = args.generate_kwargs

while (True):
try:
input_text = input("Input text: ")

if (input_text == args.shutdown_command):
model.shutdown()

if (input("change generate_kwargs? [y/n] ") == "y"):
while (True):
try:
generate_kwargs = json.loads(
input("Generate kwargs: "))
break
except KeyboardInterrupt:
model.shutdown()
except Exception as e:
e_type, e_message, _ = sys.exc_info()
print("error =", e_type.__name__)
print("message =", e_message)
continue

request = parse_generate_kwargs([input_text], generate_kwargs)
response = model.generate(request)

print_rank_n("Output text:", response.text[0])
print_rank_n("Generated tokens:", response.num_generated_tokens[0])
except KeyboardInterrupt:
model.shutdown()


if (__name__ == "__main__"):
main()
2 changes: 2 additions & 0 deletions scripts/bloom-inference-server/ds_inference/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
from .grpc_server import DSInferenceGRPCServer
from .model import DSInferenceModel
Loading

0 comments on commit 4fa35e9

Please sign in to comment.