Skip to content

Commit

Permalink
[Frontend] OpenAI API server: Do not add bos token by default when en…
Browse files Browse the repository at this point in the history
…coding (vllm-project#4688)
  • Loading branch information
bofenghuang authored May 17, 2024
1 parent 8e7fb5d commit 0150a10
Show file tree
Hide file tree
Showing 2 changed files with 22 additions and 12 deletions.
2 changes: 1 addition & 1 deletion vllm/entrypoints/openai/serving_chat.py
Original file line number Diff line number Diff line change
Expand Up @@ -158,7 +158,7 @@ async def create_chat_completion(
try:
# Tokenize/detokenize depending on prompt format (string/token list)
prompt_ids, prompt_text = self._validate_prompt_and_tokenize(
request, prompt=prompt)
request, prompt=prompt, add_special_tokens=False)
sampling_params = request.to_sampling_params()
lora_request = self._maybe_get_lora(request)
decoding_config = await self.engine.get_decoding_config()
Expand Down
32 changes: 21 additions & 11 deletions vllm/entrypoints/openai/serving_engine.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
import json
from dataclasses import dataclass
from http import HTTPStatus
from typing import Dict, List, Optional, Tuple, Union
from typing import Any, Dict, List, Optional, Tuple, Union

from pydantic import Field
from typing_extensions import Annotated
Expand Down Expand Up @@ -165,24 +165,34 @@ def _maybe_get_lora(
raise ValueError(f"The model `{request.model}` does not exist.")

def _validate_prompt_and_tokenize(
self,
request: Union[ChatCompletionRequest, CompletionRequest,
EmbeddingRequest],
prompt: Optional[str] = None,
prompt_ids: Optional[List[int]] = None,
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None
) -> Tuple[List[int], str]:
self,
request: Union[ChatCompletionRequest, CompletionRequest,
EmbeddingRequest],
prompt: Optional[str] = None,
prompt_ids: Optional[List[int]] = None,
truncate_prompt_tokens: Optional[Annotated[int,
Field(ge=1)]] = None,
add_special_tokens: bool = True) -> Tuple[List[int], str]:
if not (prompt or prompt_ids):
raise ValueError("Either prompt or prompt_ids should be provided.")
if (prompt and prompt_ids):
raise ValueError(
"Only one of prompt or prompt_ids should be provided.")

if prompt_ids is None:
tokenizer_kwargs = {} if truncate_prompt_tokens is None else {
"truncation": True,
"max_length": truncate_prompt_tokens,
# When using OpenAIServingChat for chat completions, the
# special tokens (e.g., BOS) have already been added by the
# chat template. Therefore, we do not need to add them again.
# Set add_special_tokens to False to avoid adding the BOS tokens
# again.
tokenizer_kwargs: Dict[str, Any] = {
"add_special_tokens": add_special_tokens
}
if truncate_prompt_tokens is not None:
tokenizer_kwargs.update({
"truncation": True,
"max_length": truncate_prompt_tokens,
})
input_ids = self.tokenizer(prompt, **tokenizer_kwargs).input_ids
elif truncate_prompt_tokens is not None:
input_ids = prompt_ids[-truncate_prompt_tokens:]
Expand Down

0 comments on commit 0150a10

Please sign in to comment.