-
Notifications
You must be signed in to change notification settings - Fork 53
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
76 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
@File : eval.py | ||
@Time : 2020/6/22 下午5:05 | ||
@Author : yizuotian | ||
@Description : 使用生成数据评估 | ||
""" | ||
|
||
import argparse | ||
import itertools | ||
import sys | ||
|
||
import numpy as np | ||
import torch | ||
|
||
import crnn | ||
from config import cfg | ||
from train import Generator | ||
|
||
|
||
def inference_single_image(net, image, device=None): | ||
image = np.expand_dims(image, axis=0) # 扩展batch维 | ||
image = torch.FloatTensor(image) | ||
if device: | ||
image = image.to(device) | ||
predict = net(image)[0].cpu().detach().numpy() # [W,num_classes] | ||
label = np.argmax(predict[:], axis=1) | ||
label = [k for k, g in itertools.groupby(list(label))] | ||
label = np.array(label) | ||
return label[label > 0] # 去除空格 | ||
|
||
|
||
def main(args): | ||
alpha = cfg.word.get_all_words() | ||
if args.direction == 'horizontal': | ||
net = crnn.CRNN(num_classes=len(alpha)) | ||
else: | ||
net = crnn.CRNNV(num_classes=len(alpha)) | ||
|
||
device = torch.device( | ||
'cuda:{}'.format(args.local_rank) if args.device == 'cuda' and torch.cuda.is_available() else 'cpu') | ||
|
||
net.load_state_dict(torch.load(args.weight_path, map_location='cpu')['model']) | ||
net.to(device) | ||
net.eval() | ||
# load image | ||
data_set = Generator(cfg.word.get_all_words(), args.direction) | ||
|
||
acc_list = [] | ||
for i in range(args.eval_num): | ||
image, target, input_len, target_len = data_set[i] | ||
predict_text = inference_single_image(net, image, device) | ||
gt = target[:target_len] | ||
# print("{} {}".format(gt, predict_text)) | ||
acc_list.append(len(gt) == len(predict_text) and np.allclose(gt, predict_text)) | ||
|
||
# 精度计算 | ||
acc = np.array(acc_list).mean() | ||
print('acc:{:.3f}'.format(acc)) | ||
|
||
|
||
if __name__ == '__main__': | ||
""" | ||
Usage: | ||
export KMP_DUPLICATE_LIB_OK=TRUE | ||
python eval.py --weight-path /path/to/chk.pth --direction horizontal \ | ||
--eval-num 1000 --device cpu | ||
""" | ||
parse = argparse.ArgumentParser() | ||
parse.add_argument("--device", type=str, default='cpu', help="cpu or cuda") | ||
parse.add_argument("--direction", type=str, choices=['horizontal', 'vertical'], | ||
default='horizontal', help="horizontal or vertical") | ||
parse.add_argument("--weight-path", type=str, default=None, help="weight path") | ||
parse.add_argument("--eval-num", type=int, default=1000, help="number of images to evaluate") | ||
arguments = parse.parse_args(sys.argv[1:]) | ||
main(arguments) |