Skip to content

Commit

Permalink
Revert "BUG: groupby().rolling(freq) with monotonic dates within grou…
Browse files Browse the repository at this point in the history
…ps (pandas-dev#46065)" (pandas-dev#46078)

This reverts commit ad0f1bf.
  • Loading branch information
mroeschke authored and yehoshuadimarsky committed Jul 13, 2022
1 parent 3388bb0 commit f698dab
Show file tree
Hide file tree
Showing 5 changed files with 91 additions and 96 deletions.
2 changes: 1 addition & 1 deletion doc/source/whatsnew/v1.4.2.rst
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ Fixed regressions

Bug fixes
~~~~~~~~~
- Bug in :meth:`Groupby.rolling` with a frequency window would raise a ``ValueError`` even if the datetimes within each group were monotonic (:issue:`46061`)
-
-

.. ---------------------------------------------------------------------------
Expand Down
34 changes: 17 additions & 17 deletions pandas/core/window/rolling.py
Original file line number Diff line number Diff line change
Expand Up @@ -837,7 +837,7 @@ def _gotitem(self, key, ndim, subset=None):
subset = self.obj.set_index(self._on)
return super()._gotitem(key, ndim, subset=subset)

def _validate_datetimelike_monotonic(self):
def _validate_monotonic(self):
"""
Validate that "on" is monotonic; already validated at a higher level.
"""
Expand Down Expand Up @@ -1687,7 +1687,7 @@ def _validate(self):
or isinstance(self._on, (DatetimeIndex, TimedeltaIndex, PeriodIndex))
) and isinstance(self.window, (str, BaseOffset, timedelta)):

self._validate_datetimelike_monotonic()
self._validate_monotonic()

# this will raise ValueError on non-fixed freqs
try:
Expand All @@ -1712,13 +1712,18 @@ def _validate(self):
elif not is_integer(self.window) or self.window < 0:
raise ValueError("window must be an integer 0 or greater")

def _validate_datetimelike_monotonic(self):
def _validate_monotonic(self):
"""
Validate monotonic (increasing or decreasing).
"""
if not (self._on.is_monotonic_increasing or self._on.is_monotonic_decreasing):
on = "index" if self.on is None else self.on
raise ValueError(f"{on} must be monotonic.")
self._raise_monotonic_error()

def _raise_monotonic_error(self):
formatted = self.on
if self.on is None:
formatted = "index"
raise ValueError(f"{formatted} must be monotonic")

@doc(
_shared_docs["aggregate"],
Expand Down Expand Up @@ -2626,17 +2631,12 @@ def _get_window_indexer(self) -> GroupbyIndexer:
)
return window_indexer

def _validate_datetimelike_monotonic(self):
def _validate_monotonic(self):
"""
Validate that each group in self._on is monotonic
Validate that on is monotonic;
"""
# GH 46061
on = "index" if self.on is None else self.on
if self._on.hasnans:
raise ValueError(f"{on} must not have any NaT values.")
for group_indices in self._grouper.indices.values():
group_on = self._on.take(group_indices)
if not (
group_on.is_monotonic_increasing or group_on.is_monotonic_decreasing
):
raise ValueError(f"Each group within {on} must be monotonic.")
if (
not (self._on.is_monotonic_increasing or self._on.is_monotonic_decreasing)
or self._on.hasnans
):
self._raise_monotonic_error()
79 changes: 1 addition & 78 deletions pandas/tests/window/test_groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -678,7 +678,7 @@ def test_groupby_rolling_nans_in_index(self, rollings, key):
)
if key == "index":
df = df.set_index("a")
with pytest.raises(ValueError, match=f"{key} must not have any NaT values"):
with pytest.raises(ValueError, match=f"{key} must be monotonic"):
df.groupby("c").rolling("60min", **rollings)

@pytest.mark.parametrize("group_keys", [True, False])
Expand Down Expand Up @@ -922,83 +922,6 @@ def test_nan_and_zero_endpoints(self):
)
tm.assert_series_equal(result, expected)

def test_groupby_rolling_non_monotonic(self):
# GH 43909

shuffled = [3, 0, 1, 2]
sec = 1_000
df = DataFrame(
[{"t": Timestamp(2 * x * sec), "x": x + 1, "c": 42} for x in shuffled]
)
with pytest.raises(ValueError, match=r".* must be monotonic"):
df.groupby("c").rolling(on="t", window="3s")

def test_groupby_monotonic(self):

# GH 15130
# we don't need to validate monotonicity when grouping

# GH 43909 we should raise an error here to match
# behaviour of non-groupby rolling.

data = [
["David", "1/1/2015", 100],
["David", "1/5/2015", 500],
["David", "5/30/2015", 50],
["David", "7/25/2015", 50],
["Ryan", "1/4/2014", 100],
["Ryan", "1/19/2015", 500],
["Ryan", "3/31/2016", 50],
["Joe", "7/1/2015", 100],
["Joe", "9/9/2015", 500],
["Joe", "10/15/2015", 50],
]

df = DataFrame(data=data, columns=["name", "date", "amount"])
df["date"] = to_datetime(df["date"])
df = df.sort_values("date")

expected = (
df.set_index("date")
.groupby("name")
.apply(lambda x: x.rolling("180D")["amount"].sum())
)
result = df.groupby("name").rolling("180D", on="date")["amount"].sum()
tm.assert_series_equal(result, expected)

def test_datelike_on_monotonic_within_each_group(self):
# GH 13966 (similar to #15130, closed by #15175)

# superseded by 43909
# GH 46061: OK if the on is monotonic relative to each each group

dates = date_range(start="2016-01-01 09:30:00", periods=20, freq="s")
df = DataFrame(
{
"A": [1] * 20 + [2] * 12 + [3] * 8,
"B": np.concatenate((dates, dates)),
"C": np.arange(40),
}
)

expected = (
df.set_index("B").groupby("A").apply(lambda x: x.rolling("4s")["C"].mean())
)
result = df.groupby("A").rolling("4s", on="B").C.mean()
tm.assert_series_equal(result, expected)

def test_datelike_on_not_monotonic_within_each_group(self):
# GH 46061
df = DataFrame(
{
"A": [1] * 3 + [2] * 3,
"B": [Timestamp(year, 1, 1) for year in [2020, 2021, 2019]] * 2,
"C": range(6),
}
)
with pytest.raises(ValueError, match="Each group within B must be monotonic."):
df.groupby("A").rolling("365D", on="B")


class TestExpanding:
def setup_method(self):
Expand Down
12 changes: 12 additions & 0 deletions pandas/tests/window/test_rolling.py
Original file line number Diff line number Diff line change
Expand Up @@ -1420,6 +1420,18 @@ def test_groupby_rolling_nan_included():
tm.assert_frame_equal(result, expected)


def test_groupby_rolling_non_monotonic():
# GH 43909

shuffled = [3, 0, 1, 2]
sec = 1_000
df = DataFrame(
[{"t": Timestamp(2 * x * sec), "x": x + 1, "c": 42} for x in shuffled]
)
with pytest.raises(ValueError, match=r".* must be monotonic"):
df.groupby("c").rolling(on="t", window="3s")


@pytest.mark.parametrize("method", ["skew", "kurt"])
def test_rolling_skew_kurt_numerical_stability(method):
# GH#6929
Expand Down
60 changes: 60 additions & 0 deletions pandas/tests/window/test_timeseries_window.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
Series,
Timestamp,
date_range,
to_datetime,
)
import pandas._testing as tm

Expand Down Expand Up @@ -647,6 +648,65 @@ def agg_by_day(x):

tm.assert_frame_equal(result, expected)

def test_groupby_monotonic(self):

# GH 15130
# we don't need to validate monotonicity when grouping

# GH 43909 we should raise an error here to match
# behaviour of non-groupby rolling.

data = [
["David", "1/1/2015", 100],
["David", "1/5/2015", 500],
["David", "5/30/2015", 50],
["David", "7/25/2015", 50],
["Ryan", "1/4/2014", 100],
["Ryan", "1/19/2015", 500],
["Ryan", "3/31/2016", 50],
["Joe", "7/1/2015", 100],
["Joe", "9/9/2015", 500],
["Joe", "10/15/2015", 50],
]

df = DataFrame(data=data, columns=["name", "date", "amount"])
df["date"] = to_datetime(df["date"])
df = df.sort_values("date")

expected = (
df.set_index("date")
.groupby("name")
.apply(lambda x: x.rolling("180D")["amount"].sum())
)
result = df.groupby("name").rolling("180D", on="date")["amount"].sum()
tm.assert_series_equal(result, expected)

def test_non_monotonic_raises(self):
# GH 13966 (similar to #15130, closed by #15175)

# superseded by 43909

dates = date_range(start="2016-01-01 09:30:00", periods=20, freq="s")
df = DataFrame(
{
"A": [1] * 20 + [2] * 12 + [3] * 8,
"B": np.concatenate((dates, dates)),
"C": np.arange(40),
}
)

expected = (
df.set_index("B").groupby("A").apply(lambda x: x.rolling("4s")["C"].mean())
)
with pytest.raises(ValueError, match=r".* must be monotonic"):
df.groupby("A").rolling(
"4s", on="B"
).C.mean() # should raise for non-monotonic t series

df2 = df.sort_values("B")
result = df2.groupby("A").rolling("4s", on="B").C.mean()
tm.assert_series_equal(result, expected)

def test_rolling_cov_offset(self):
# GH16058

Expand Down

0 comments on commit f698dab

Please sign in to comment.