This repository contains the official source code for the paper FPPL: An Efficient and Non-IID Robust Federated Continual Learning Framework.
@article{he2024fppl,
title = {FPPL: An Efficient and Non-IID Robust Federated Continual Learning Framework},
author = {Yuchen He and Chuyun Shen and Xiangfeng Wang and Bo Jin},
year = {2024},
journal = {arXiv preprint arXiv:2411.01904}
}
To ensure smooth execution of the code, we recommend setting up a dedicated environment using conda
.
-
Create a new conda environment:
conda create -n FPPL python==3.9.18
-
Activate the environment:
conda activate FPPL
-
Install the required packages:
pip install -r requirements.txt
CIFAR-100 dataset can be automatically downloaded with torchvision.datasets
.
ImageNet-R and CUB-200 dataset can be downloaded from the link provided in LAMDA-PILOT. Please specify the folder of your dataset in src/utils/conf.py
.
Set the [DATASET]
and [MODEL]
options using the filenames of the .json files in the configs folder.
python src/main_fcl.py --dataset [DATASET] --model [MODEL] --device 0
python src/main_fcl.py --dataset imagenetr_T20_beta5e-1 --model fppl --device 0
python src/main_fcl.py --dataset imagenetr_T20_beta5e-1 --model fppl_wo_debias --device 0
python src/main_fcl.py --dataset cifar100_T10_NONIID_cprompt_setting --model fppl_cprompt_setting --device 0
This repo is heavily based on LAMDA-PILOT and MarsFL, many thanks.