Skip to content

Latest commit

 

History

History
191 lines (151 loc) · 5.51 KB

File metadata and controls

191 lines (151 loc) · 5.51 KB
comments difficulty edit_url rating source tags
true
Medium
1638
Weekly Contest 354 Q2
Array
Binary Search
Sorting
Sliding Window

中文文档

Description

You are given a 0-indexed array nums and a non-negative integer k.

In one operation, you can do the following:

  • Choose an index i that hasn't been chosen before from the range [0, nums.length - 1].
  • Replace nums[i] with any integer from the range [nums[i] - k, nums[i] + k].

The beauty of the array is the length of the longest subsequence consisting of equal elements.

Return the maximum possible beauty of the array nums after applying the operation any number of times.

Note that you can apply the operation to each index only once.

subsequence of an array is a new array generated from the original array by deleting some elements (possibly none) without changing the order of the remaining elements.

 

Example 1:

Input: nums = [4,6,1,2], k = 2
Output: 3
Explanation: In this example, we apply the following operations:
- Choose index 1, replace it with 4 (from range [4,8]), nums = [4,4,1,2].
- Choose index 3, replace it with 4 (from range [0,4]), nums = [4,4,1,4].
After the applied operations, the beauty of the array nums is 3 (subsequence consisting of indices 0, 1, and 3).
It can be proven that 3 is the maximum possible length we can achieve.

Example 2:

Input: nums = [1,1,1,1], k = 10
Output: 4
Explanation: In this example we don't have to apply any operations.
The beauty of the array nums is 4 (whole array).

 

Constraints:

  • 1 <= nums.length <= 105
  • 0 <= nums[i], k <= 105

Solutions

Solution 1: Difference Array

We notice that for each operation, all elements within the interval $[nums[i]-k, nums[i]+k]$ will increase by $1$. Therefore, we can use a difference array to record the contributions of these operations to the beauty value.

In the problem, $nums[i]-k$ might be negative. We add $k$ to all elements to ensure the results are non-negative. Thus, we can create a difference array $d$ with a length of $\max(nums) + k \times 2 + 2$.

Next, we iterate through the array $nums$. For the current element $x$ being iterated, we increase $d[x]$ by $1$ and decrease $d[x+k\times2+1]$ by $1$. In this way, we can calculate the prefix sum for each position using the $d$ array, which represents the beauty value for each position. The maximum beauty value can then be found.

The time complexity is $O(M + 2 \times k + n)$, and the space complexity is $O(M + 2 \times k)$. Here, $n$ is the length of the array $nums$, and $M$ is the maximum value in the array $nums$.

Python3

class Solution:
    def maximumBeauty(self, nums: List[int], k: int) -> int:
        m = max(nums) + k * 2 + 2
        d = [0] * m
        for x in nums:
            d[x] += 1
            d[x + k * 2 + 1] -= 1
        return max(accumulate(d))

Java

class Solution {
    public int maximumBeauty(int[] nums, int k) {
        int m = Arrays.stream(nums).max().getAsInt() + k * 2 + 2;
        int[] d = new int[m];
        for (int x : nums) {
            d[x]++;
            d[x + k * 2 + 1]--;
        }
        int ans = 0, s = 0;
        for (int x : d) {
            s += x;
            ans = Math.max(ans, s);
        }
        return ans;
    }
}

C++

class Solution {
public:
    int maximumBeauty(vector<int>& nums, int k) {
        int m = *max_element(nums.begin(), nums.end()) + k * 2 + 2;
        vector<int> d(m);
        for (int x : nums) {
            d[x]++;
            d[x + k * 2 + 1]--;
        }
        int ans = 0, s = 0;
        for (int x : d) {
            s += x;
            ans = max(ans, s);
        }
        return ans;
    }
};

Go

func maximumBeauty(nums []int, k int) (ans int) {
	m := slices.Max(nums)
	m += k*2 + 2
	d := make([]int, m)
	for _, x := range nums {
		d[x]++
		d[x+k*2+1]--
	}
	s := 0
	for _, x := range d {
		s += x
		if ans < s {
			ans = s
		}
	}
	return
}

TypeScript

function maximumBeauty(nums: number[], k: number): number {
    const m = Math.max(...nums) + k * 2 + 2;
    const d: number[] = Array(m).fill(0);
    for (const x of nums) {
        d[x]++;
        d[x + k * 2 + 1]--;
    }
    let ans = 0;
    let s = 0;
    for (const x of d) {
        s += x;
        ans = Math.max(ans, s);
    }
    return ans;
}