comments | difficulty | edit_url | tags | |||
---|---|---|---|---|---|---|
true |
Medium |
|
Given an integer array arr
, return the number of distinct bitwise ORs of all the non-empty subarrays of arr
.
The bitwise OR of a subarray is the bitwise OR of each integer in the subarray. The bitwise OR of a subarray of one integer is that integer.
A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: arr = [0] Output: 1 Explanation: There is only one possible result: 0.
Example 2:
Input: arr = [1,1,2] Output: 3 Explanation: The possible subarrays are [1], [1], [2], [1, 1], [1, 2], [1, 1, 2]. These yield the results 1, 1, 2, 1, 3, 3. There are 3 unique values, so the answer is 3.
Example 3:
Input: arr = [1,2,4] Output: 6 Explanation: The possible results are 1, 2, 3, 4, 6, and 7.
Constraints:
1 <= arr.length <= 5 * 104
0 <= arr[i] <= 109
The problem asks for the number of unique bitwise OR operations results of subarrays. If we enumerate the end position
Therefore, we use a hash table
Next, we enumerate the end position
Finally, we return the number of elements in the hash table
The time complexity is
class Solution:
def subarrayBitwiseORs(self, arr: List[int]) -> int:
s = {0}
ans = set()
for x in arr:
s = {x | y for y in s} | {x}
ans |= s
return len(ans)
class Solution {
public int subarrayBitwiseORs(int[] arr) {
Set<Integer> s = new HashSet<>();
s.add(0);
Set<Integer> ans = new HashSet<>();
for (int x : arr) {
Set<Integer> t = new HashSet<>();
for (int y : s) {
t.add(x | y);
}
t.add(x);
s = t;
ans.addAll(s);
}
return ans.size();
}
}
class Solution {
public:
int subarrayBitwiseORs(vector<int>& arr) {
unordered_set<int> s{{0}};
unordered_set<int> ans;
for (int& x : arr) {
unordered_set<int> t{{x}};
for (int y : s) {
t.insert(x | y);
}
s = move(t);
ans.insert(s.begin(), s.end());
}
return ans.size();
}
};
func subarrayBitwiseORs(arr []int) int {
ans := map[int]bool{}
s := map[int]bool{0: true}
for _, x := range arr {
t := map[int]bool{x: true}
for y := range s {
t[x|y] = true
}
s = t
for y := range s {
ans[y] = true
}
}
return len(ans)
}
function subarrayBitwiseORs(arr: number[]): number {
const s: Set<number> = new Set();
const ans: Set<number> = new Set();
for (const x of arr) {
const t: Set<number> = new Set();
for (const y of s) {
t.add(x | y);
}
t.add(x);
s.clear();
for (const y of t) {
s.add(y);
ans.add(y);
}
}
return ans.size;
}