comments | difficulty | edit_url | tags | ||
---|---|---|---|---|---|
true |
Medium |
|
Find all valid combinations of k
numbers that sum up to n
such that the following conditions are true:
- Only numbers
1
through9
are used. - Each number is used at most once.
Return a list of all possible valid combinations. The list must not contain the same combination twice, and the combinations may be returned in any order.
Example 1:
Input: k = 3, n = 7 Output: [[1,2,4]] Explanation: 1 + 2 + 4 = 7 There are no other valid combinations.
Example 2:
Input: k = 3, n = 9 Output: [[1,2,6],[1,3,5],[2,3,4]] Explanation: 1 + 2 + 6 = 9 1 + 3 + 5 = 9 2 + 3 + 4 = 9 There are no other valid combinations.
Example 3:
Input: k = 4, n = 1 Output: [] Explanation: There are no valid combinations. Using 4 different numbers in the range [1,9], the smallest sum we can get is 1+2+3+4 = 10 and since 10 > 1, there are no valid combination.
Constraints:
2 <= k <= 9
1 <= n <= 60
We design a function
The execution logic of the function
Approach One:
- If
$s = 0$ and the length of the current search path$t$ is$k$ , it means that a group of answers has been found. Add$t$ to$ans$ and then return. - If
$i \gt 9$ or$i \gt s$ or the length of the current search path$t$ is greater than$k$ , it means that the current search path cannot be the answer, so return directly. - Otherwise, we can choose to add the number
$i$ to the search path$t$ , and then continue to search, i.e., execute$dfs(i + 1, s - i)$ . After the search is completed, remove$i$ from the search path$t$ ; we can also choose not to add the number$i$ to the search path$t$ , and directly execute$dfs(i + 1, s)$ .
class Solution:
def combinationSum3(self, k: int, n: int) -> List[List[int]]:
def dfs(i: int, s: int):
if s == 0:
if len(t) == k:
ans.append(t[:])
return
if i > 9 or i > s or len(t) >= k:
return
t.append(i)
dfs(i + 1, s - i)
t.pop()
dfs(i + 1, s)
ans = []
t = []
dfs(1, n)
return ans
class Solution {
private List<List<Integer>> ans = new ArrayList<>();
private List<Integer> t = new ArrayList<>();
private int k;
public List<List<Integer>> combinationSum3(int k, int n) {
this.k = k;
dfs(1, n);
return ans;
}
private void dfs(int i, int s) {
if (s == 0) {
if (t.size() == k) {
ans.add(new ArrayList<>(t));
}
return;
}
if (i > 9 || i > s || t.size() >= k) {
return;
}
t.add(i);
dfs(i + 1, s - i);
t.remove(t.size() - 1);
dfs(i + 1, s);
}
}
class Solution {
public:
vector<vector<int>> combinationSum3(int k, int n) {
vector<vector<int>> ans;
vector<int> t;
function<void(int, int)> dfs = [&](int i, int s) {
if (s == 0) {
if (t.size() == k) {
ans.emplace_back(t);
}
return;
}
if (i > 9 || i > s || t.size() >= k) {
return;
}
t.emplace_back(i);
dfs(i + 1, s - i);
t.pop_back();
dfs(i + 1, s);
};
dfs(1, n);
return ans;
}
};
func combinationSum3(k int, n int) (ans [][]int) {
t := []int{}
var dfs func(i, s int)
dfs = func(i, s int) {
if s == 0 {
if len(t) == k {
ans = append(ans, slices.Clone(t))
}
return
}
if i > 9 || i > s || len(t) >= k {
return
}
t = append(t, i)
dfs(i+1, s-i)
t = t[:len(t)-1]
dfs(i+1, s)
}
dfs(1, n)
return
}
function combinationSum3(k: number, n: number): number[][] {
const ans: number[][] = [];
const t: number[] = [];
const dfs = (i: number, s: number) => {
if (s === 0) {
if (t.length === k) {
ans.push(t.slice());
}
return;
}
if (i > 9 || i > s || t.length >= k) {
return;
}
t.push(i);
dfs(i + 1, s - i);
t.pop();
dfs(i + 1, s);
};
dfs(1, n);
return ans;
}
impl Solution {
#[allow(dead_code)]
pub fn combination_sum3(k: i32, n: i32) -> Vec<Vec<i32>> {
let mut ret = Vec::new();
let mut candidates = (1..=9).collect();
let mut cur_vec = Vec::new();
Self::dfs(n, k, 0, 0, &mut cur_vec, &mut candidates, &mut ret);
ret
}
#[allow(dead_code)]
fn dfs(
target: i32,
length: i32,
cur_index: usize,
cur_sum: i32,
cur_vec: &mut Vec<i32>,
candidates: &Vec<i32>,
ans: &mut Vec<Vec<i32>>,
) {
if cur_sum > target || cur_vec.len() > (length as usize) {
// No answer for this
return;
}
if cur_sum == target && cur_vec.len() == (length as usize) {
// We get an answer
ans.push(cur_vec.clone());
return;
}
for i in cur_index..candidates.len() {
cur_vec.push(candidates[i]);
Self::dfs(
target,
length,
i + 1,
cur_sum + candidates[i],
cur_vec,
candidates,
ans,
);
cur_vec.pop().unwrap();
}
}
}
public class Solution {
private List<IList<int>> ans = new List<IList<int>>();
private List<int> t = new List<int>();
private int k;
public IList<IList<int>> CombinationSum3(int k, int n) {
this.k = k;
dfs(1, n);
return ans;
}
private void dfs(int i, int s) {
if (s == 0) {
if (t.Count == k) {
ans.Add(new List<int>(t));
}
return;
}
if (i > 9 || i > s || t.Count >= k) {
return;
}
t.Add(i);
dfs(i + 1, s - i);
t.RemoveAt(t.Count - 1);
dfs(i + 1, s);
}
}
Another approach:
- If
$s = 0$ and the length of the current search path$t$ is$k$ , it means that a group of answers has been found. Add$t$ to$ans$ and then return. - If
$i \gt 9$ or$i \gt s$ or the length of the current search path$t$ is greater than$k$ , it means that the current search path cannot be the answer, so return directly. - Otherwise, we enumerate the next number
$j$ , i.e.,$j \in [i, 9]$ , add the number$j$ to the search path$t$ , and then continue to search, i.e., execute$dfs(j + 1, s - j)$ . After the search is completed, remove$j$ from the search path$t$ .
In the main function, we call
The time complexity is
class Solution:
def combinationSum3(self, k: int, n: int) -> List[List[int]]:
def dfs(i: int, s: int):
if s == 0:
if len(t) == k:
ans.append(t[:])
return
if i > 9 or i > s or len(t) >= k:
return
for j in range(i, 10):
t.append(j)
dfs(j + 1, s - j)
t.pop()
ans = []
t = []
dfs(1, n)
return ans
class Solution {
private List<List<Integer>> ans = new ArrayList<>();
private List<Integer> t = new ArrayList<>();
private int k;
public List<List<Integer>> combinationSum3(int k, int n) {
this.k = k;
dfs(1, n);
return ans;
}
private void dfs(int i, int s) {
if (s == 0) {
if (t.size() == k) {
ans.add(new ArrayList<>(t));
}
return;
}
if (i > 9 || i > s || t.size() >= k) {
return;
}
for (int j = i; j <= 9; ++j) {
t.add(j);
dfs(j + 1, s - j);
t.remove(t.size() - 1);
}
}
}
class Solution {
public:
vector<vector<int>> combinationSum3(int k, int n) {
vector<vector<int>> ans;
vector<int> t;
function<void(int, int)> dfs = [&](int i, int s) {
if (s == 0) {
if (t.size() == k) {
ans.emplace_back(t);
}
return;
}
if (i > 9 || i > s || t.size() >= k) {
return;
}
for (int j = i; j <= 9; ++j) {
t.emplace_back(j);
dfs(j + 1, s - j);
t.pop_back();
}
};
dfs(1, n);
return ans;
}
};
func combinationSum3(k int, n int) (ans [][]int) {
t := []int{}
var dfs func(i, s int)
dfs = func(i, s int) {
if s == 0 {
if len(t) == k {
ans = append(ans, slices.Clone(t))
}
return
}
if i > 9 || i > s || len(t) >= k {
return
}
for j := i; j <= 9; j++ {
t = append(t, j)
dfs(j+1, s-j)
t = t[:len(t)-1]
}
}
dfs(1, n)
return
}
function combinationSum3(k: number, n: number): number[][] {
const ans: number[][] = [];
const t: number[] = [];
const dfs = (i: number, s: number) => {
if (s === 0) {
if (t.length === k) {
ans.push(t.slice());
}
return;
}
if (i > 9 || i > s || t.length >= k) {
return;
}
for (let j = i; j <= 9; ++j) {
t.push(j);
dfs(j + 1, s - j);
t.pop();
}
};
dfs(1, n);
return ans;
}
public class Solution {
private List<IList<int>> ans = new List<IList<int>>();
private List<int> t = new List<int>();
private int k;
public IList<IList<int>> CombinationSum3(int k, int n) {
this.k = k;
dfs(1, n);
return ans;
}
private void dfs(int i, int s) {
if (s == 0) {
if (t.Count == k) {
ans.Add(new List<int>(t));
}
return;
}
if (i > 9 || i > s || t.Count >= k) {
return;
}
for (int j = i; j <= 9; ++j) {
t.Add(j);
dfs(j + 1, s - j);
t.RemoveAt(t.Count - 1);
}
}
}
We can use a binary integer of length
We enumerate binary integers in the range of
The time complexity is
Similar problems:
class Solution:
def combinationSum3(self, k: int, n: int) -> List[List[int]]:
ans = []
for mask in range(1 << 9):
if mask.bit_count() == k:
t = [i + 1 for i in range(9) if mask >> i & 1]
if sum(t) == n:
ans.append(t)
return ans
class Solution {
public List<List<Integer>> combinationSum3(int k, int n) {
List<List<Integer>> ans = new ArrayList<>();
for (int mask = 0; mask < 1 << 9; ++mask) {
if (Integer.bitCount(mask) == k) {
List<Integer> t = new ArrayList<>();
int s = 0;
for (int i = 0; i < 9; ++i) {
if ((mask >> i & 1) == 1) {
s += (i + 1);
t.add(i + 1);
}
}
if (s == n) {
ans.add(t);
}
}
}
return ans;
}
}
class Solution {
public:
vector<vector<int>> combinationSum3(int k, int n) {
vector<vector<int>> ans;
for (int mask = 0; mask < 1 << 9; ++mask) {
if (__builtin_popcount(mask) == k) {
int s = 0;
vector<int> t;
for (int i = 0; i < 9; ++i) {
if (mask >> i & 1) {
t.push_back(i + 1);
s += i + 1;
}
}
if (s == n) {
ans.emplace_back(t);
}
}
}
return ans;
}
};
func combinationSum3(k int, n int) (ans [][]int) {
for mask := 0; mask < 1<<9; mask++ {
if bits.OnesCount(uint(mask)) == k {
t := []int{}
s := 0
for i := 0; i < 9; i++ {
if mask>>i&1 == 1 {
s += i + 1
t = append(t, i+1)
}
}
if s == n {
ans = append(ans, t)
}
}
}
return
}
function combinationSum3(k: number, n: number): number[][] {
const ans: number[][] = [];
for (let mask = 0; mask < 1 << 9; ++mask) {
if (bitCount(mask) === k) {
const t: number[] = [];
let s = 0;
for (let i = 0; i < 9; ++i) {
if (mask & (1 << i)) {
t.push(i + 1);
s += i + 1;
}
}
if (s === n) {
ans.push(t);
}
}
}
return ans;
}
function bitCount(i: number): number {
i = i - ((i >>> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);
i = (i + (i >>> 4)) & 0x0f0f0f0f;
i = i + (i >>> 8);
i = i + (i >>> 16);
return i & 0x3f;
}
public class Solution {
public IList<IList<int>> CombinationSum3(int k, int n) {
List<IList<int>> ans = new List<IList<int>>();
for (int mask = 0; mask < 1 << 9; ++mask) {
if (bitCount(mask) == k) {
List<int> t = new List<int>();
int s = 0;
for (int i = 0; i < 9; ++i) {
if ((mask >> i & 1) == 1) {
s += i + 1;
t.Add(i + 1);
}
}
if (s == n) {
ans.Add(t);
}
}
}
return ans;
}
private int bitCount(int x) {
int cnt = 0;
while (x > 0) {
x -= x & -x;
++cnt;
}
return cnt;
}
}