comments | difficulty | edit_url | tags | ||
---|---|---|---|---|---|
true |
Medium |
|
Given an array of distinct integers candidates
and a target integer target
, return a list of all unique combinations of candidates
where the chosen numbers sum to target
. You may return the combinations in any order.
The same number may be chosen from candidates
an unlimited number of times. Two combinations are unique if the frequency of at least one of the chosen numbers is different.
The test cases are generated such that the number of unique combinations that sum up to target
is less than 150
combinations for the given input.
Example 1:
Input: candidates = [2,3,6,7], target = 7 Output: [[2,2,3],[7]] Explanation: 2 and 3 are candidates, and 2 + 2 + 3 = 7. Note that 2 can be used multiple times. 7 is a candidate, and 7 = 7. These are the only two combinations.
Example 2:
Input: candidates = [2,3,5], target = 8 Output: [[2,2,2,2],[2,3,3],[3,5]]
Example 3:
Input: candidates = [2], target = 1 Output: []
Constraints:
1 <= candidates.length <= 30
2 <= candidates[i] <= 40
- All elements of
candidates
are distinct. 1 <= target <= 40
We can first sort the array to facilitate pruning.
Next, we design a function
In the function
In the main function, we just need to call the function
The time complexity is
Similar problems:
class Solution:
def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]:
def dfs(i: int, s: int):
if s == 0:
ans.append(t[:])
return
if s < candidates[i]:
return
for j in range(i, len(candidates)):
t.append(candidates[j])
dfs(j, s - candidates[j])
t.pop()
candidates.sort()
t = []
ans = []
dfs(0, target)
return ans
class Solution {
private List<List<Integer>> ans = new ArrayList<>();
private List<Integer> t = new ArrayList<>();
private int[] candidates;
public List<List<Integer>> combinationSum(int[] candidates, int target) {
Arrays.sort(candidates);
this.candidates = candidates;
dfs(0, target);
return ans;
}
private void dfs(int i, int s) {
if (s == 0) {
ans.add(new ArrayList(t));
return;
}
if (s < candidates[i]) {
return;
}
for (int j = i; j < candidates.length; ++j) {
t.add(candidates[j]);
dfs(j, s - candidates[j]);
t.remove(t.size() - 1);
}
}
}
class Solution {
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
sort(candidates.begin(), candidates.end());
vector<vector<int>> ans;
vector<int> t;
function<void(int, int)> dfs = [&](int i, int s) {
if (s == 0) {
ans.emplace_back(t);
return;
}
if (s < candidates[i]) {
return;
}
for (int j = i; j < candidates.size(); ++j) {
t.push_back(candidates[j]);
dfs(j, s - candidates[j]);
t.pop_back();
}
};
dfs(0, target);
return ans;
}
};
func combinationSum(candidates []int, target int) (ans [][]int) {
sort.Ints(candidates)
t := []int{}
var dfs func(i, s int)
dfs = func(i, s int) {
if s == 0 {
ans = append(ans, slices.Clone(t))
return
}
if s < candidates[i] {
return
}
for j := i; j < len(candidates); j++ {
t = append(t, candidates[j])
dfs(j, s-candidates[j])
t = t[:len(t)-1]
}
}
dfs(0, target)
return
}
function combinationSum(candidates: number[], target: number): number[][] {
candidates.sort((a, b) => a - b);
const ans: number[][] = [];
const t: number[] = [];
const dfs = (i: number, s: number) => {
if (s === 0) {
ans.push(t.slice());
return;
}
if (s < candidates[i]) {
return;
}
for (let j = i; j < candidates.length; ++j) {
t.push(candidates[j]);
dfs(j, s - candidates[j]);
t.pop();
}
};
dfs(0, target);
return ans;
}
impl Solution {
fn dfs(i: usize, s: i32, candidates: &Vec<i32>, t: &mut Vec<i32>, ans: &mut Vec<Vec<i32>>) {
if s == 0 {
ans.push(t.clone());
return;
}
if s < candidates[i] {
return;
}
for j in i..candidates.len() {
t.push(candidates[j]);
Self::dfs(j, s - candidates[j], candidates, t, ans);
t.pop();
}
}
pub fn combination_sum(mut candidates: Vec<i32>, target: i32) -> Vec<Vec<i32>> {
candidates.sort();
let mut ans = Vec::new();
Self::dfs(0, target, &candidates, &mut vec![], &mut ans);
ans
}
}
public class Solution {
private List<IList<int>> ans = new List<IList<int>>();
private List<int> t = new List<int>();
private int[] candidates;
public IList<IList<int>> CombinationSum(int[] candidates, int target) {
Array.Sort(candidates);
this.candidates = candidates;
dfs(0, target);
return ans;
}
private void dfs(int i, int s) {
if (s == 0) {
ans.Add(new List<int>(t));
return;
}
if (s < candidates[i]) {
return;
}
for (int j = i; j < candidates.Length; ++j) {
t.Add(candidates[j]);
dfs(j, s - candidates[j]);
t.RemoveAt(t.Count - 1);
}
}
}
We can also change the implementation logic of the function
The time complexity is
class Solution:
def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]:
def dfs(i: int, s: int):
if s == 0:
ans.append(t[:])
return
if i >= len(candidates) or s < candidates[i]:
return
dfs(i + 1, s)
t.append(candidates[i])
dfs(i, s - candidates[i])
t.pop()
candidates.sort()
t = []
ans = []
dfs(0, target)
return ans
class Solution {
private List<List<Integer>> ans = new ArrayList<>();
private List<Integer> t = new ArrayList<>();
private int[] candidates;
public List<List<Integer>> combinationSum(int[] candidates, int target) {
Arrays.sort(candidates);
this.candidates = candidates;
dfs(0, target);
return ans;
}
private void dfs(int i, int s) {
if (s == 0) {
ans.add(new ArrayList(t));
return;
}
if (i >= candidates.length || s < candidates[i]) {
return;
}
dfs(i + 1, s);
t.add(candidates[i]);
dfs(i, s - candidates[i]);
t.remove(t.size() - 1);
}
}
class Solution {
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
sort(candidates.begin(), candidates.end());
vector<vector<int>> ans;
vector<int> t;
function<void(int, int)> dfs = [&](int i, int s) {
if (s == 0) {
ans.emplace_back(t);
return;
}
if (i >= candidates.size() || s < candidates[i]) {
return;
}
dfs(i + 1, s);
t.push_back(candidates[i]);
dfs(i, s - candidates[i]);
t.pop_back();
};
dfs(0, target);
return ans;
}
};
func combinationSum(candidates []int, target int) (ans [][]int) {
sort.Ints(candidates)
t := []int{}
var dfs func(i, s int)
dfs = func(i, s int) {
if s == 0 {
ans = append(ans, slices.Clone(t))
return
}
if i >= len(candidates) || s < candidates[i] {
return
}
dfs(i+1, s)
t = append(t, candidates[i])
dfs(i, s-candidates[i])
t = t[:len(t)-1]
}
dfs(0, target)
return
}
function combinationSum(candidates: number[], target: number): number[][] {
candidates.sort((a, b) => a - b);
const ans: number[][] = [];
const t: number[] = [];
const dfs = (i: number, s: number) => {
if (s === 0) {
ans.push(t.slice());
return;
}
if (i >= candidates.length || s < candidates[i]) {
return;
}
dfs(i + 1, s);
t.push(candidates[i]);
dfs(i, s - candidates[i]);
t.pop();
};
dfs(0, target);
return ans;
}
impl Solution {
fn dfs(i: usize, s: i32, candidates: &Vec<i32>, t: &mut Vec<i32>, ans: &mut Vec<Vec<i32>>) {
if s == 0 {
ans.push(t.clone());
return;
}
if i >= candidates.len() || s < candidates[i] {
return;
}
Self::dfs(i + 1, s, candidates, t, ans);
t.push(candidates[i]);
Self::dfs(i, s - candidates[i], candidates, t, ans);
t.pop();
}
pub fn combination_sum(mut candidates: Vec<i32>, target: i32) -> Vec<Vec<i32>> {
candidates.sort();
let mut ans = Vec::new();
Self::dfs(0, target, &candidates, &mut vec![], &mut ans);
ans
}
}
public class Solution {
private List<IList<int>> ans = new List<IList<int>>();
private List<int> t = new List<int>();
private int[] candidates;
public IList<IList<int>> CombinationSum(int[] candidates, int target) {
Array.Sort(candidates);
this.candidates = candidates;
dfs(0, target);
return ans;
}
private void dfs(int i, int s) {
if (s == 0) {
ans.Add(new List<int>(t));
return;
}
if (i >= candidates.Length || s < candidates[i]) {
return;
}
dfs(i + 1, s);
t.Add(candidates[i]);
dfs(i, s - candidates[i]);
t.RemoveAt(t.Count - 1);
}
}
class Solution {
/**
* @param integer[] $candidates
* @param integer $target
* @return integer[][]
*/
function combinationSum($candidates, $target) {
$result = [];
$currentCombination = [];
$startIndex = 0;
sort($candidates);
$this->findCombinations($candidates, $target, $startIndex, $currentCombination, $result);
return $result;
}
function findCombinations($candidates, $target, $startIndex, $currentCombination, &$result) {
if ($target === 0) {
$result[] = $currentCombination;
return;
}
for ($i = $startIndex; $i < count($candidates); $i++) {
$num = $candidates[$i];
if ($num > $target) {
break;
}
$currentCombination[] = $num;
$this->findCombinations($candidates, $target - $num, $i, $currentCombination, $result);
array_pop($currentCombination);
}
}
}