Skip to content

Latest commit

 

History

History
709 lines (531 loc) · 21.2 KB

README.md

File metadata and controls

709 lines (531 loc) · 21.2 KB

@yume-chan/struct

license npm type definitions npm version npm bundle size Codecov

A C-style structure serializer and deserializer. Written in TypeScript and highly takes advantage of its type system.

Installation

$ npm i @yume-chan/struct

Quick Start

import Struct from '@yume-chan/struct';

const MyStruct =
    new Struct({ littleEndian: true })
        .int8('foo')
        .int64('bar')
        .int32('bazLength')
        .string('baz', { lengthField: 'bazLength' });

const value = await MyStruct.deserialize(stream);
value.foo // number
value.bar // bigint
value.bazLength // number
value.baz // string

const buffer = MyStruct.serialize({
    foo: 42,
    bar: 42n,
    // `bazLength` automatically set to `baz.length`
    baz: 'Hello, World!',
});

Compatibility

Chrome Edge Firefox Internet Explorer Safari Node.js
Promise 32 12 29 No1 8 0.12
ArrayBuffer 7 12 4 10 5.1 0.10
Uint8Array 7 12 4 10 5.1 0.10
DataView 9 12 15 10 5.1 0.10
Basic usage 32 12 29 101 8 0.12
BigInt 67 79 68 No 14 10.4
DataView#getBigUint64 67 79 68 No No2 10.4
DataView#setBigUint64 67 79 68 No No2 10.4
Use int64/uint64 API 67 79 68 No 142 10.4

1 Requires a polyfill for Promise (e.g. promise-polyfill)

2 Requires a polyfill for DataView#getBigUint64 and DataView#setBigUint64

API

placeholder

function placeholder<T>(): T {
    return undefined as unknown as T;
}

Returns a (fake) value of the given type. It's only useful in TypeScript, if you are using JavaScript, you shouldn't care about it.

Many methods in this library have multiple generic parameters, but TypeScript only allows users to specify none (let TypeScript inference all of them from arguments), or all generic arguments. (Microsoft/TypeScript#26242)

Detail explanation (click to expand)

When you have a generic method, where half generic parameters can be inferred.

declare function fn<A, B>(a: A): [A, B];
fn(42); // Expected 2 type arguments, but got 1. ts(2558)

Rather than force users repeat the type A, I declare a parameter for B.

declare function fn2<A, B>(a: A, b: B): [A, B];

I don't really need a value of type B, I only require its type information

fn2(42, placeholder<boolean>()) // fn2<number, boolean>

To workaround this issue, these methods have an extra _typescriptType parameter, to let you specify a generic parameter, without passing all other generic arguments manually. The actual value of _typescriptType argument is never used, so you can pass any value, as long as it has the correct type, including values produced by this placeholder method.

With that said, I don't expect you to specify any generic arguments manually when using this library.

Struct

class Struct<
    TFields extends object = {},
    TOmitInitKey extends string | number | symbol = never,
    TExtra extends object = {},
    TPostDeserialized = undefined
> {
    public constructor(options: Partial<StructOptions> = StructDefaultOptions);
}

Creates a new structure declaration.

Generic parameters (click to expand)

This information was added to help you understand how does it work. These are considered as "internal state" so don't specify them manually.

  1. TFields: Type of the Struct value. Modified when new fields are added.
  2. TOmitInitKey: When serializing a structure containing variable length arrays, the length field can be calculate from the array field, so they doesn't need to be provided explicitly.
  3. TExtra: Type of extra fields. Modified when extra is called.
  4. TPostDeserialized: State of the postDeserialize function. Modified when postDeserialize is called. Affects return type of deserialize

Parameters

  1. options:

int8/uint8/int16/uint16/int32/uint32

int32<
    TName extends string | number | symbol,
    TTypeScriptType = number
>(
    name: TName,
    _typescriptType?: TTypeScriptType
): Struct<
    TFields & Record<TName, TTypeScriptType>,
    TOmitInitKey,
    TExtra,
    TPostDeserialized
>;

Appends an int8/uint8/int16/uint16/int32/uint32 field to the Struct.

Generic parameters (click to expand)
  1. TName: Literal type of the field's name.
  2. TTypeScriptType = number: Type of the field in the result object. For example you can declare it as a number literal type, or some enum type.

Parameters

  1. name: (Required) Field name. Must have a literal type.
  2. _typescriptType: Set field's type. See examples below.

Note

There is no generic constraints on the TTypeScriptType, because TypeScript doesn't allow casting enum types to number.

So it's technically possible to pass in an incompatible type (e.g. string). But obviously, it's a bad idea.

Examples

  1. Append an int32 field named foo

    const struct = new Struct()
        .int32('foo');
    
    const value = await struct.deserialize(stream);
    value.foo; // number
    
    struct.serialize({ }, context) // error: 'foo' is required
    struct.serialize({ foo: 'bar' }, context) // error: 'foo' must be a number
    struct.serialize({ foo: 42 }, context) // ok
  2. Set fields' type (can be used with placeholder method)

    enum MyEnum {
        a,
        b,
    }
    
    const struct = new Struct()
        .int32('foo', placeholder<MyEnum>())
        .int32('bar', MyEnum.a as const);
    
    const value = await struct.deserialize(stream);
    value.foo; // MyEnum
    value.bar; // MyEnum.a
    
    struct.serialize({ foo: 42, bar: MyEnum.a }, context); // error: 'foo' must be of type `MyEnum`
    struct.serialize({ foo: MyEnum.a, bar: MyEnum.b }, context); // error: 'bar' must be of type `MyEnum.a`
    struct.serialize({ foo: MyEnum.a, bar: MyEnum.b }, context); // ok

int64/uint64

int64<
    TName extends string | number | symbol,
    TTypeScriptType = bigint
>(
    name: TName,
    _typescriptType?: TTypeScriptType
): Struct<
    TFields & Record<TName, TTypeScriptType>,
    TOmitInitKey,
    TExtra,
    TPostDeserialized
>;

Appends an int64/uint64 field to the Struct.

Requires native support for BigInt. Check compatibility table for more information.

arraybuffer/uint8ClampedArray/string

arraybuffer<
    TName extends string | number | symbol,
    TTypeScriptType = ArrayBuffer
>(
    name: TName,
    options: FixedLengthArrayBufferLikeFieldOptions,
    _typescriptType?: TTypeScriptType,
): Struct<
    TFields & Record<TName, TTypeScriptType>,
    TOmitInitKey,
    TExtra,
    TPostDeserialized
>;

arraybuffer<
    TName extends string | number | symbol,
    TOptions extends VariableLengthArrayBufferLikeFieldOptions<TFields>,
    TTypeScriptType = ArrayBuffer,
>(
    name: TName,
    options: TOptions,
    _typescriptType?: TTypeScriptType,
): Struct<
    TFields & Record<TName, TTypeScriptType>,
    TOmitInitKey | TOptions['lengthField'],
    TExtra,
    TPostDeserialized
>;

Appends an ArrayBuffer/Uint8ClampedArray/string field to the Struct.

The options parameter defines its length, it can be in two formats:

  • { length: number }: Presence of the length option indicates that it's a fixed length array.
  • { lengthField: string }: Presence of the lengthField option indicates it's a variable length array. The lengthField options must refers to a number or string typed field that's already defined in this Struct. When deserializing, it will use that field's value as its length. And when serializing, it will write its length to that field.

All these three are actually deserialized to ArrayBuffer, then converted to Uint8ClampedArray or string for ease of use.

fields

fields<
    TOther extends Struct<any, any, any, any>
>(
    other: TOther
): Struct<
    TFields & TOther['fieldsType'],
    TOmitInitKey | TOther['omitInitType'],
    TExtra & TOther['extraType'],
    TPostDeserialized
>;

Merges (flats) another Struct's fields and extra fields into the current one.

Examples

  1. Extending another Struct

    const MyStructV1 =
        new Struct()
            .int32('field1');
    
    const MyStructV2 =
        new Struct()
            .fields(MyStructV1)
            .int32('field2');
    
    const structV2 = await MyStructV2.deserialize(context);
    structV2.field1; // number
    structV2.field2; // number
    // Fields are flatten
  2. Also possible in any order

    const MyStructV1 =
        new Struct()
            .int32('field1');
    
    const MyStructV2 =
        new Struct()
            .int32('field2')
            .fields(MyStructV1);
    
    const structV2 = await MyStructV2.deserialize(context);
    structV2.field1; // number
    structV2.field2; // number
    // Same result as above, but serialize/deserialize order is reversed

extra

extra<
    T extends Record<
        Exclude<
            keyof T,
            Exclude<
                keyof T,
                keyof TFields
            >
        >,
        never
    >
>(
    value: T & ThisType<Overwrite<Overwrite<TExtra, T>, TFields>>
): Struct<
    TFields,
    TInit,
    Overwrite<TExtra, T>,
    TPostDeserialized
>;

Adds extra fields into the Struct. Extra fields will be defined on prototype of each Struct values, so they don't affect serialize and deserialize process, and deserialized fields will overwrite extra fields.

Multiple calls merge all extra fields together.

Generic Parameters

  1. T: Type of the extra fields. The scary looking generic constraint is used to forbid overwriting any already existed fields.

Parameters

  1. value: An object containing anything you want to add to Struct values. Accessors and methods are also allowed.

Examples

  1. Add an extra field

    const struct = new Struct()
        .int32('foo')
        .extra({
            bar: 'hello',
        });
    
    const value = await struct.deserialize(stream);
    value.foo; // number
    value.bar; // 'hello'
    
    struct.serialize({ foo: 42 }, context); // ok
    struct.serialize({ foo: 42, bar: 'hello' }, context); // error: 'bar' is redundant
  2. Add getters and methods. this in functions refers to the result object.

    const struct = new Struct()
        .int32('foo')
        .extra({
            get bar() {
                // `this` is the result Struct value
                return this.foo + 1;
            },
            logBar() {
                // `this` also contains other extra fields
                console.log(this.bar);
            },
        });
    
    const value = await struct.deserialize(stream);
    value.foo; // number
    value.bar; // number
    value.logBar();

postDeserialize

postDeserialize(): Struct<TFields, TOmitInitKey, TExtra, undefined>;

Remove any registered post deserialization callback.

postDeserialize(
    callback: (this: TFields, object: TFields) => never
): Struct<TFields, TOmitInitKey, TExtra, never>;
postDeserialize(
    callback: (this: TFields, object: TFields) => void
): Struct<TFields, TOmitInitKey, TExtra, undefined>;

Registers (or replaces) a custom callback to be run after deserialized.

this in callback, along with the first parameter object will both be the deserialized Struct value.

A callback returning never (always throws errors) will change the return type of deserialize to never.

A callback returning void means it modify the result object in-place (or doesn't modify it at all), so deserialize will still return the result object.

postDeserialize<TPostSerialize>(
    callback: (this: TFields, object: TFields) => TPostSerialize
): Struct<TFields, TOmitInitKey, TExtra, TPostSerialize>;

Registers (or replaces) a custom callback to be run after deserialized.

A callback returning anything other than undefined will cause deserialize to return that value instead.

Generic Parameters

  1. TPostSerialize: Type of the new result.

Parameters

  1. callback: An function contains the custom logic to be run, optionally returns a new result. Or undefined, to remove any previously set postDeserialize callback.

Examples

  1. Handle an "error" packet

    // Say your protocol have an error packet,
    // You want to throw a JavaScript Error when received such a packet,
    // But you don't want to modify all receiving path
    
    const struct = new Struct()
        .int32('messageLength')
        .string('message', { lengthField: 'messageLength' })
        .postDeserialize(value => {
            throw new Error(value.message);
        });
  2. Do anything you want

    // I think this one doesn't need any code example
  3. Replace result object

    const struct1 = new Struct()
        .int32('foo')
        .postDeserialize(value => {
            return {
                bar: value.foo,
            };
        });
    
    const value = await struct.deserialize(stream);
    value.foo // error: not exist
    value.bar; // number

deserialize

interface StructDeserializationContext {
    decodeUtf8(buffer: ArrayBuffer): string;

    read(length: number): ArrayBuffer | Promise<ArrayBuffer>;
}

deserialize(
    context: StructDeserializationContext
): Promise<
    TPostDeserialized extends undefined
        ? Overwrite<TExtra, TValue>
        : TPostDeserialized
    >;

Deserialize a Struct value from context.

As the signature shows, if the postDeserialize callback returns any value, deserialize will return that value instead.

The read method of context, when being called, should returns exactly length bytes of data (or throw an Error if it can't).

serialize

interface StructSerializationContext {
    encodeUtf8(input: string): ArrayBuffer;
}

serialize(
    init: Omit<TFields, TOmitInitKey>,
    context: StructSerializationContext
): ArrayBuffer;

Serialize a Struct value into an ArrayBuffer.

Custom field type

This library supports adding fields of user defined types.

Struct#field

field<
    TName extends string | number | symbol,
    TDefinition extends StructFieldDefinition<any, any, any>
>(
    name: TName,
    definition: TDefinition
): Struct<
    TFields & Record<TName, TDefinition['TValue']>,
    TOmitInitKey | TDefinition['TOmitInitKey'],
    TExtra,
    TPostDeserialized
>;

Appends a StructFieldDefinition to the Struct.

Actually, all built-in field type methods are aliases of field. For example, calling

struct.int8('foo')

is same as

struct.field(
    'foo',
    new NumberFieldDefinition(
        NumberFieldType.Int8
    )
)

StructFieldDefinition

abstract class StructFieldDefinition<
    TOptions = void,
    TValue = unknown,
    TOmitInitKey extends PropertyKey = never,
> {
    public readonly options: TOptions;

    public constructor(options: TOptions);
}

A StructFieldDefinition describes type, size and runtime semantics of a field.

It's an abstract class, means it lacks some method implementations, so it shouldn't be constructed.

TValue/TOmitInitKey

These two fields are used to provide type information to TypeScript. Their values will always be undefined, but having correct types is enough. You don't need to care about them.

getSize

abstract getSize(): number;

Derived classes must implement this method to return size (or minimal size if it's dynamic) of this field.

Actual size should be returned from StructFieldValue#getSize

create

abstract create(
    options: Readonly<StructOptions>,
    context: StructSerializationContext,
    struct: StructValue,
    value: TValue,
): StructFieldValue<this>;

Derived classes must implement this method to create its own field value instance for the current definition.

Struct#serialize will call this method, then call StructFieldValue#serialize to serialize one field value.

deserialize

abstract deserialize(
    options: Readonly<StructOptions>,
    context: StructDeserializationContext,
    struct: StructValue,
): ValueOrPromise<StructFieldValue<this>>;

Derived classes must implement this method to define how to deserialize a value from context. Can also return a Promise.

Usually implementations should be:

  1. Somehow parse the value from context
  2. Pass the value into its create method

Sometimes, some metadata is present when deserializing, but need to be calculated when serializing, for example a UTF-8 encoded string may have different length between itself (character count) and serialized form (byte length). So deserialize can save those metadata on the StructFieldValue instance for later use.

StructFieldValue

abstract class StructFieldValue<
    TDefinition extends StructFieldDefinition<any, any, any>
>

To define a custom type, one must create their own StructFieldValue type to define the runtime semantics.

Each StructFieldValue is linked to a StructFieldDefinition.

getSize

getSize(): number;

Gets size of this field. By default, it returns its definition's size.

If this field's size can change based on some criteria, one must override getSize to return its actual size.

get/set

get(): TDefinition['TValue'];
set(value: TDefinition['TValue']): void;

Defines how to get or set this field's value. By default, it store its value in value field.

If one needs to manipulate other states when getting/setting values, they can override these methods.

serialize

abstract serialize(
    dataView: DataView,
    offset: number,
    context: StructSerializationContext
): void;

Derived classes must implement this method to serialize current value into dataView, from offset. It must not write more bytes than what its getSize returned.