Skip to content

y-tag/cpp-ToyBox-Ranking

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

cpp-ToyBox-Ranking

Now, under developing. There are insufficient unit tests.

This library is a tiny package for learning-to-rank problems. This library currently supports:

  • RankSVM [1]
  • RankNet [2,7]
  • ListNet [3]
  • ListMLE [4]
  • LambdaRank [5,7]
  • LambdaMART [6,7]

These implemented models are currently linear model, except for LambdaMART. No non-linear kernel in SVM, no hidden layer in neural networks.

REFERENCES

  • [1] T. Joachims. (2002). Optimizing Search Engines Using Clickthrough Data. KDD 2002.
  • [2] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender. (2005). Learning to Rank using Gradient Descent. ICML 2005.
  • [3] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. (2007). Learning to Rank: From Pairwise Approach to Listwise Approach. ICML 2007.
  • [4] F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li. (2008). Listwise Approach to Learning to Rank - Theory and Algorithm. ICML 2008.
  • [5] C. J. C. Burges, R. Ragno, and Q. V. Le. (2006). Learning to Rank with Nonsmooth Cost Functions. NIPS 2006.
  • [6] Q. Wu, C. Burges, K. Svore, and J. Gao. (2008). Ranking, Boosting and Model Adaptation. Microsoft Technical Report MSR-TR-2008-109.
  • [7] C. J.C. Burges. (2010). From RankNet to LambdaRank to LambdaMART: An Overview. Microsoft Research Technical Report MSR-TR-2010-82.

LINKS

AUTHOR

TAGAMI Yukihiro [email protected]

LICENSE

This library is distributed under the term of the MIT license. http://opensource.org/licenses/mit-license.php

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published