forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Kernel][Core] Add AWQ support to the Marlin kernel (vllm-project#6612)
- Loading branch information
1 parent
2c291cc
commit 30b59a5
Showing
21 changed files
with
1,602 additions
and
284 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,269 @@ | ||
#include "marlin.cuh" | ||
|
||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800 | ||
|
||
namespace marlin { | ||
|
||
template <int const num_threads, int const num_bits, bool const has_perm> | ||
__global__ void awq_marlin_repack_kernel( | ||
uint32_t const* __restrict__ b_q_weight_ptr, uint32_t* __restrict__ out_ptr, | ||
int size_k, int size_n) {} | ||
|
||
} // namespace marlin | ||
|
||
torch::Tensor awq_marlin_repack(torch::Tensor& b_q_weight, torch::Tensor& perm, | ||
int64_t size_k, int64_t size_n, | ||
int64_t num_bits) { | ||
TORCH_CHECK_NOT_IMPLEMENTED( | ||
false, "marlin_repack_from_gptq(..) requires CUDA_ARCH >= 8.0"); | ||
return torch::empty({1, 1}); | ||
} | ||
|
||
#else | ||
|
||
namespace marlin { | ||
|
||
template <int const num_threads, int const num_bits> | ||
__global__ void awq_marlin_repack_kernel( | ||
uint32_t const* __restrict__ b_q_weight_ptr, uint32_t* __restrict__ out_ptr, | ||
int size_k, int size_n) { | ||
constexpr int pack_factor = 32 / num_bits; | ||
|
||
int k_tiles = size_k / tile_k_size; | ||
int n_tiles = size_n / tile_n_size; | ||
int block_k_tiles = div_ceil(k_tiles, gridDim.x); | ||
|
||
int start_k_tile = blockIdx.x * block_k_tiles; | ||
if (start_k_tile >= k_tiles) { | ||
return; | ||
} | ||
|
||
int finish_k_tile = min(start_k_tile + block_k_tiles, k_tiles); | ||
|
||
// Wait until the next thread tile has been loaded to shared memory. | ||
auto wait_for_stage = [&]() { | ||
// We only have `stages - 2` active fetches since we are double buffering | ||
// and can only issue the next fetch when it is guaranteed that the previous | ||
// shared memory load is fully complete (as it may otherwise be | ||
// overwritten). | ||
cp_async_wait<repack_stages - 2>(); | ||
__syncthreads(); | ||
}; | ||
|
||
extern __shared__ int4 sh[]; | ||
|
||
constexpr int tile_n_ints = tile_n_size / pack_factor; | ||
|
||
constexpr int stage_n_threads = tile_n_ints / 4; | ||
constexpr int stage_k_threads = tile_k_size; | ||
constexpr int stage_size = stage_k_threads * stage_n_threads; | ||
|
||
auto fetch_to_shared = [&](int pipe, int k_tile_id, int n_tile_id) { | ||
if (n_tile_id >= n_tiles) { | ||
cp_async_fence(); | ||
return; | ||
} | ||
|
||
int first_n = n_tile_id * tile_n_size; | ||
int first_n_packed = first_n / pack_factor; | ||
|
||
int4* sh_ptr = sh + stage_size * pipe; | ||
|
||
if (threadIdx.x < stage_size) { | ||
int k_id = threadIdx.x / stage_n_threads; | ||
int n_id = threadIdx.x % stage_n_threads; | ||
|
||
int first_k = k_tile_id * tile_k_size; | ||
|
||
cp_async4(&sh_ptr[k_id * stage_n_threads + n_id], | ||
reinterpret_cast<int4 const*>( | ||
&(b_q_weight_ptr[(first_k + k_id) * (size_n / pack_factor) + | ||
first_n_packed + (n_id * 4)]))); | ||
} | ||
|
||
cp_async_fence(); | ||
}; | ||
|
||
auto repack_tile = [&](int pipe, int k_tile_id, int n_tile_id) { | ||
if (n_tile_id >= n_tiles) { | ||
return; | ||
} | ||
|
||
int warp_id = threadIdx.x / 32; | ||
int th_id = threadIdx.x % 32; | ||
|
||
if (warp_id >= 4) { | ||
return; | ||
} | ||
|
||
int tc_col = th_id / 4; | ||
int tc_row = (th_id % 4) * 2; | ||
|
||
constexpr int tc_offsets[4] = {0, 1, 8, 9}; | ||
|
||
int cur_n = warp_id * 16 + tc_col; | ||
int cur_n_packed = cur_n / pack_factor; | ||
int cur_n_pos = cur_n % pack_factor; | ||
|
||
constexpr int sh_stride = tile_n_ints; | ||
constexpr uint32_t mask = (1 << num_bits) - 1; | ||
|
||
int4* sh_stage_ptr = sh + stage_size * pipe; | ||
uint32_t* sh_stage_int_ptr = reinterpret_cast<uint32_t*>(sh_stage_ptr); | ||
|
||
// Undo interleaving | ||
int cur_n_pos_unpacked; | ||
if constexpr (num_bits == 4) { | ||
constexpr int undo_pack[8] = {0, 4, 1, 5, 2, 6, 3, 7}; | ||
cur_n_pos_unpacked = undo_pack[cur_n_pos]; | ||
} else { | ||
constexpr int undo_pack[4] = {0, 2, 1, 3}; | ||
cur_n_pos_unpacked = undo_pack[cur_n_pos]; | ||
} | ||
|
||
uint32_t vals[8]; | ||
#pragma unroll | ||
for (int i = 0; i < 4; i++) { | ||
int cur_elem = tc_row + tc_offsets[i]; | ||
|
||
int packed_src_0 = sh_stage_int_ptr[cur_n_packed + sh_stride * cur_elem]; | ||
int packed_src_1 = sh_stage_int_ptr[cur_n_packed + (8 / pack_factor) + | ||
sh_stride * cur_elem]; | ||
|
||
vals[i] = (packed_src_0 >> (cur_n_pos_unpacked * num_bits)) & mask; | ||
vals[4 + i] = (packed_src_1 >> (cur_n_pos_unpacked * num_bits)) & mask; | ||
} | ||
|
||
constexpr int tile_size = tile_k_size * tile_n_size / pack_factor; | ||
int out_offset = (k_tile_id * n_tiles + n_tile_id) * tile_size; | ||
|
||
// Result of: | ||
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h | ||
if constexpr (num_bits == 4) { | ||
constexpr int pack_idx[8] = {0, 2, 4, 6, 1, 3, 5, 7}; | ||
|
||
uint32_t res = 0; | ||
#pragma unroll | ||
for (int i = 0; i < 8; i++) { | ||
res |= vals[pack_idx[i]] << (i * 4); | ||
} | ||
|
||
out_ptr[out_offset + th_id * 4 + warp_id] = res; | ||
|
||
} else { | ||
constexpr int pack_idx[4] = {0, 2, 1, 3}; | ||
|
||
uint32_t res1 = 0; | ||
uint32_t res2 = 0; | ||
#pragma unroll | ||
for (int i = 0; i < 4; i++) { | ||
res1 |= vals[pack_idx[i]] << (i * 8); | ||
res2 |= vals[4 + pack_idx[i]] << (i * 8); | ||
} | ||
|
||
out_ptr[out_offset + th_id * 8 + (warp_id * 2) + 0] = res1; | ||
out_ptr[out_offset + th_id * 8 + (warp_id * 2) + 1] = res2; | ||
} | ||
}; | ||
|
||
auto start_pipes = [&](int k_tile_id, int n_tile_id) { | ||
#pragma unroll | ||
for (int pipe = 0; pipe < repack_stages - 1; pipe++) { | ||
fetch_to_shared(pipe, k_tile_id, n_tile_id + pipe); | ||
} | ||
|
||
wait_for_stage(); | ||
}; | ||
#pragma unroll | ||
for (int k_tile_id = start_k_tile; k_tile_id < finish_k_tile; k_tile_id++) { | ||
int n_tile_id = 0; | ||
|
||
start_pipes(k_tile_id, n_tile_id); | ||
|
||
while (n_tile_id < n_tiles) { | ||
#pragma unroll | ||
for (int pipe = 0; pipe < repack_stages; pipe++) { | ||
fetch_to_shared((pipe + repack_stages - 1) % repack_stages, k_tile_id, | ||
n_tile_id + pipe + repack_stages - 1); | ||
repack_tile(pipe, k_tile_id, n_tile_id + pipe); | ||
wait_for_stage(); | ||
} | ||
n_tile_id += repack_stages; | ||
} | ||
} | ||
} | ||
|
||
} // namespace marlin | ||
|
||
#define CALL_IF(NUM_BITS) \ | ||
else if (num_bits == NUM_BITS) { \ | ||
cudaFuncSetAttribute( \ | ||
marlin::awq_marlin_repack_kernel<marlin::repack_threads, NUM_BITS>, \ | ||
cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \ | ||
marlin::awq_marlin_repack_kernel<marlin::repack_threads, NUM_BITS> \ | ||
<<<blocks, marlin::repack_threads, max_shared_mem, stream>>>( \ | ||
b_q_weight_ptr, out_ptr, size_k, size_n); \ | ||
} | ||
|
||
torch::Tensor awq_marlin_repack(torch::Tensor& b_q_weight, int64_t size_k, | ||
int64_t size_n, int64_t num_bits) { | ||
// Verify compatibility with marlin tile of 16x64 | ||
TORCH_CHECK(size_k % marlin::tile_k_size == 0, "size_k = ", size_k, | ||
" is not divisible by tile_k_size = ", marlin::tile_k_size); | ||
TORCH_CHECK(size_n % marlin::tile_n_size == 0, "size_n = ", size_n, | ||
" is not divisible by tile_n_size = ", marlin::tile_n_size); | ||
|
||
TORCH_CHECK(num_bits == 4 || num_bits == 8, | ||
"num_bits must be 4 or 8. Got = ", num_bits); | ||
int const pack_factor = 32 / num_bits; | ||
|
||
// Verify B | ||
TORCH_CHECK(b_q_weight.size(0) == size_k, | ||
"b_q_weight.size(0) = ", b_q_weight.size(0), | ||
" is not size_k = ", size_k); | ||
TORCH_CHECK((size_n / pack_factor) == b_q_weight.size(1), | ||
"Shape mismatch: b_q_weight.size(1) = ", b_q_weight.size(1), | ||
", size_n = ", size_n, ", pack_factor = ", pack_factor); | ||
|
||
// Verify device and strides | ||
TORCH_CHECK(b_q_weight.device().is_cuda(), "b_q_weight is not on GPU"); | ||
TORCH_CHECK(b_q_weight.is_contiguous(), "b_q_weight is not contiguous"); | ||
TORCH_CHECK(b_q_weight.dtype() == at::kInt, "b_q_weight type is not kInt"); | ||
|
||
// Alloc buffers | ||
const at::cuda::OptionalCUDAGuard device_guard(device_of(b_q_weight)); | ||
auto options = torch::TensorOptions() | ||
.dtype(b_q_weight.dtype()) | ||
.device(b_q_weight.device()); | ||
torch::Tensor out = torch::empty( | ||
{size_k / marlin::tile_size, size_n * marlin::tile_size / pack_factor}, | ||
options); | ||
|
||
// Get ptrs | ||
uint32_t const* b_q_weight_ptr = | ||
reinterpret_cast<uint32_t const*>(b_q_weight.data_ptr()); | ||
uint32_t* out_ptr = reinterpret_cast<uint32_t*>(out.data_ptr()); | ||
|
||
// Get dev info | ||
int dev = b_q_weight.get_device(); | ||
cudaStream_t stream = at::cuda::getCurrentCUDAStream(dev); | ||
int blocks; | ||
cudaDeviceGetAttribute(&blocks, cudaDevAttrMultiProcessorCount, dev); | ||
|
||
int max_shared_mem = 0; | ||
cudaDeviceGetAttribute(&max_shared_mem, | ||
cudaDevAttrMaxSharedMemoryPerBlockOptin, dev); | ||
TORCH_CHECK(max_shared_mem > 0); | ||
|
||
if (false) { | ||
} | ||
CALL_IF(4) | ||
CALL_IF(8) | ||
else { | ||
TORCH_CHECK(false, "Unsupported repack config: num_bits = ", num_bits); | ||
} | ||
|
||
return out; | ||
} | ||
|
||
#endif |
Oops, something went wrong.