Skip to content

Commit

Permalink
README related osce fixes
Browse files Browse the repository at this point in the history
  • Loading branch information
Jan Buethe committed Apr 29, 2024
1 parent 0dc559f commit fe9ded3
Showing 1 changed file with 85 additions and 0 deletions.
85 changes: 85 additions & 0 deletions dnn/torch/osce/scripts/concatenator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
import os
import argparse

import numpy as np
from scipy import signal
from scipy.io import wavfile
import resampy




parser = argparse.ArgumentParser()

parser.add_argument("filelist", type=str, help="file with filenames for concatenation in WAVE format")
parser.add_argument("target_fs", type=int, help="target sampling rate of concatenated file")
parser.add_argument("output", type=str, help="binary output file (integer16)")
parser.add_argument("--basedir", type=str, help="basedir for filenames in filelist, defaults to ./", default="./")
parser.add_argument("--normalize", action="store_true", help="apply normalization")
parser.add_argument("--db_max", type=float, help="max DB for random normalization", default=0)
parser.add_argument("--db_min", type=float, help="min DB for random normalization", default=0)
parser.add_argument("--verbose", action="store_true")

def read_filelist(basedir, filelist):
with open(filelist, "r") as f:
files = f.readlines()

fullfiles = [os.path.join(basedir, f.rstrip('\n')) for f in files if len(f.rstrip('\n')) > 0]

return fullfiles

def read_wave(file, target_fs):
fs, x = wavfile.read(file)

if fs < target_fs:
return None
print(f"[read_wave] warning: file {file} will be up-sampled from {fs} to {target_fs} Hz")

if fs != target_fs:
x = resampy.resample(x, fs, target_fs)

return x.astype(np.float32)

def random_normalize(x, db_min, db_max, max_val=2**15 - 1):
db = np.random.uniform(db_min, db_max, 1)
m = np.abs(x).max()
c = 10**(db/20) * max_val / m

return c * x


def concatenate(filelist : str, output : str, target_fs: int, normalize=True, db_min=0, db_max=0, verbose=False):

overlap_size = int(40 * target_fs / 8000)
overlap_mem = np.zeros(overlap_size, dtype=np.float32)
overlap_win1 = (0.5 + 0.5 * np.cos(np.arange(0, overlap_size) * np.pi / overlap_size)).astype(np.float32)
overlap_win2 = np.flipud(overlap_win1)

with open(output, 'wb') as f:
for file in filelist:
x = read_wave(file, target_fs)
if x is None: continue

if len(x) < 10 * overlap_size:
if verbose: print(f"skipping {file}...")
continue
elif verbose:
print(f"processing {file}...")

if normalize:
x = random_normalize(x, db_min, db_max)

x1 = x[:-overlap_size]
x1[:overlap_size] = overlap_win1 * overlap_mem + overlap_win2 * x1[:overlap_size]

f.write(x1.astype(np.int16).tobytes())

overlap_mem = x1[-overlap_size]


if __name__ == "__main__":
args = parser.parse_args()

filelist = read_filelist(args.basedir, args.filelist)

concatenate(filelist, args.output, args.target_fs, normalize=args.normalize, db_min=args.db_min, db_max=args.db_max, verbose=args.verbose)

0 comments on commit fe9ded3

Please sign in to comment.