Skip to content

xingyizhou/CenterNet2

Repository files navigation

Probabilistic two-stage detection

Two-stage object detectors that use class-agnostic one-stage detectors as the proposal network.

Probabilistic two-stage detection,
Xingyi Zhou, Vladlen Koltun, Philipp Krähenbühl,
arXiv technical report (arXiv 2103.07461)

Contact: [email protected]. Any questions or discussions are welcomed!

Summary

  • Two-stage CenterNet: First stage estimates object probabilities, second stage conditionally classifies objects.

  • Resulting detector is faster and more accurate than both traditional two-stage detectors (fewer proposals required), and one-stage detectors (lighter first stage head).

  • Our best model achieves 56.4 mAP on COCO test-dev.

  • This repo also includes a detectron2-based CenterNet implementation with better accuracy (42.5 mAP at 70FPS) and a new FPN version of CenterNet (40.2 mAP with Res50_1x).

Main results

All models are trained with multi-scale training, and tested with a single scale. The FPS is tested on a Titan RTX GPU. More models and details can be found in the MODEL_ZOO.

COCO

Model COCO val mAP FPS
CenterNet-S4_DLA_8x 42.5 71
CenterNet2_R50_1x 42.9 24
CenterNet2_X101-DCN_2x 49.9 8
CenterNet2_R2-101-DCN-BiFPN_4x+4x_1560_ST 56.1 5
CenterNet2_DLA-BiFPN-P5_24x_ST 49.2 38

LVIS

Model val mAP box
CenterNet2_R50_1x 26.5
CenterNet2_FedLoss_R50_1x 28.3

Objects365

Model val mAP
CenterNet2_R50_1x 22.6

Installation

Our project is developed on detectron2. Please follow the official detectron2 installation.

We use the default detectron2 demo script. To run inference on an image folder using our pre-trained model, run

python demo.py --config-file configs/CenterNet2_R50_1x.yaml --input path/to/image/ --opts MODEL.WEIGHTS models/CenterNet2_R50_1x.pth

Benchmark evaluation and training

Please check detectron2 GETTING_STARTED.md for running evaluation and training. Our config files are under configs and the pre-trained models are in the MODEL_ZOO.

License

Our code is under Apache 2.0 license. centernet/modeling/backbone/bifpn_fcos.py are from AdelaiDet, which follows the original non-commercial license.

Citation

If you find this project useful for your research, please use the following BibTeX entry.

@inproceedings{zhou2021probablistic,
  title={Probabilistic two-stage detection},
  author={Zhou, Xingyi and Koltun, Vladlen and Kr{\"a}henb{\"u}hl, Philipp},
  booktitle={arXiv preprint arXiv:2103.07461},
  year={2021}
}