Skip to content

The Pytorch implementation for "RefineDNet: A Weakly Supervised Refinement Framework for Single Image Dehazing" (TIP 2021)

Notifications You must be signed in to change notification settings

xiaofeng94/RefineDNet-for-dehazing

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RefineDNet for dehazing

RefineDNet is a two-stage dehazing framework which can be weakly supervised using real-world unpaired images. That is, the training set never requires paired hazy and haze-free images coming from the same scene.

In the first stage, it adopts DCP to restore visibility of the input hazy image. In the second stage, it improves the realness of preliminary results from the first stage via CNNs. RefineDNet is outlined in the following figure, and more details can be found in the paper (or this link) titled as RefineDNet: A Weakly Supervised Refinement Framework for Single Image Dehazing. (Early Access in Trans. Image Process.) framework

Our Environment

  • Ubuntu 16.06
  • Python (>= 3.5)
  • PyTorch (>= 1.1.0) with CUDA 9.0
  • torchvision (>=0.3.0)
  • numpy (>= 1.17.0)

Testing

Download the pretrained models.

  1. Get the model on Google drive or BaiduYun Disk (Key: bswu). It's trained on RESIDE-unpaired.

  2. Create a folder named checkpoints, and unzip refined_DCP_outdoor.zip in ./checkpoints. Now, your directory tree should look like

<RefineDNet_root>
├── checkpoints
│   ├── refined_DCP_outdoor
│   │   ├── 60_net_D.pth
│   │   ├── 60_net_Refiner_J.pth
│   │   ├── 60_net_Refiner_T.pth
│   │   └── test_opt.txt
│   ...
...

Quick test on real-world images

  1. Download the pretrained model on RESIDE-unpaired (see above).

  2. Run the following command from <RefineDNet_root>.

python quick_test.py --dataroot ./datasets/quick_test --dataset_mode single --name refined_DCP_outdoor --model refined_DCP --phase test --preprocess none --save_image --method_name refined_DCP_outdoor_ep_60 --epoch 60

The results will be saved in the folder <RefineDNet_root>/datatsets/quick_test/refined_DCP_outdoor_ep_60.

Test on BeDDE

  1. Download the pretrained model on BeDDE.

  2. Run the following command from <RefineDNet_root>.

python test_BeDDE.py --dataroot <BeDDE_root> --dataset_mode simple_bedde --bedde_list ./datasets/BeDDE/bedde_list.txt --name refined_DCP_outdoor --model refined_DCP --phase test --preprocess none --save_image --method_name refined_DCP_outdoor_ep_60 --epoch 60

The results will be saved in the folder <BeDDE_root>/<city_name>/refined_DCP_outdoor_ep_60.

Training

Train RefineDNet on RESIDE-unpaired

  1. Download RESIDE-unpaired on Google drive or BaiduYun Disk (Key: bswu). Unzip RESIDE-unpaired.zip in the folder <RefineDNet_root>/datasets. Your directory tree should look like
<RefineDNet_root>
├── datasets
│   ├── BeDDE
│   ├── RESIDE-unpaired
│   │   ├── trainA
│   │   └── trainB
│   ...
...
  1. Open visdom by python -m visdom.server

  2. Run the following command from <RefineDNet_root>.

python train.py --dataroot ./datasets/RESIDE-unpaired --dataset_mode unpaired --model refined_DCP --name refined_DCP_outdoor --niter 30 --niter_decay 60 --lr_decay_iters 10 --preprocess scale_min_and_crop --load_size 300 --crop_size 256 --num_threads 8 --save_epoch_freq 3

Train RefineDNet on ITS (from RESIDE-standard)

  1. Download ITS here. Unzip hazy.zip and clear.zip into <RefineDNet_root>/datasets/ITS.

  2. Rename the hazy image folder as trainA and the clear image folder as trainB. Then, your directory tree should look like

<RefineDNet_root>
├── datasets
│   ├── BeDDE
│   ├── ITS
│   │   ├── trainA
│   │   └── trainB
│   ...
...
  1. Open visdom by python -m visdom.server

  2. Run the following command from <RefineDNet_root>.

python train.py --dataroot ./datasets/ITS --dataset_mode unpaired --model refined_DCP --name refined_DCP_indoor --niter 30 --niter_decay 60 --lr_decay_iters 5 --preprocess scale_width_and_crop --load_size 372 --crop_size 256 --num_threads 8 --save_epoch_freq 1

Results

Some dehazing samples from BeDDE and the Internet produced by various methods. dehazing samples

Useful links

  1. RESIDE dataset

  2. BeDDE dataset

  3. This code is based on CycleGAN

About

The Pytorch implementation for "RefineDNet: A Weakly Supervised Refinement Framework for Single Image Dehazing" (TIP 2021)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages