InScope: A New Real-world 3D Infrastructure-side Collaborative Perception Dataset for Open Traffic Scenarios
This is the official implementation of InScope dataset. "InScope: A New Real-world 3D Infrastructure-side Collaborative Perception Dataset for Open Traffic Scenarios". Xiaofei Zhang, Yining Li, Jinping Wang, Xiangyi Qin, Ying Shen, Zhengping Fan, Xiaojun Tan†
Due to project restrictions, the InScope dataset is made conditionally public. If you need to use the InScope dataset, please fill in the following ./assets/InScope_Dataset_Release_Agreement.docx file and email your full name and affiliation to the contact person. We ask for your information only to ensure the dataset is used for non-commercial purposes.
After downloading the data, please put the data in the following structure:
├── InScope-Sec, InScope_Pri, and InScope datasets
│ ├── ImageSets
| |── train.txt
| |── test.txt
| |── val.txt
│ ├── labels
| |── 000000.txt
| |── 000001.txt
| |── 000002.txt
| |── ...
│ ├── points
| |── 000000.npy
| |── 000001.npy
| |── 000002.npy
| |── ...
├── InScope_track
│ ├── label_02
| |── 0000.txt
| |── 0001.txt
| |── 0002.txt
| |── ...
│ ├── points
| |── 0000
| |── 000000.bin
| |── 000001.bin
| |── 000002.bin
| |── ...
| |── 0001
| |── 0002
| |── ...
│ ├── evaluate_tracking.seqmap
│ ├── evaluate_tracking.seqmap.test
│ ├── evaluate_tracking.seqmap.training
│ ├── evaluate_tracking.seqmap.val
To facilitate researchers' use and understanding, we adapted the InScope dataset to the OpenPCDet framework and provided the corresponding dataset configuration file ./InScope.config
For detection training & inference, you can find instructions in detection_code/openpcdet/README_InScope.md in detail.
All the checkpoints are released in link in the tabels below, you can save them in codes/ckpts/.
Methods | Car [email protected] | Pedestrian [email protected] | Cyclist [email protected] | Truck [email protected] | mAP40 | FPS | Download Link |
---|---|---|---|---|---|---|---|
PointRCNN | 71.75 | 68.13 | 62.91 | 94.50 | 74.32 | 4.58 | [URL] |
3DSSD | 68.00 | 13.88 | 36.58 | 95.08 | 53.38 | 11.35 | [URL] |
SECOND | 72.82 | 47.95 | 59.91 | 95.98 | 69.17 | 20.58 | [URL] |
Pointpillar | 78.04 | 35.34 | 58.46 | 95.86 | 66.93 | 24.51 | [URL] |
PV-RCNN | 75.05 | 48.37 | 56.31 | 94.52 | 68.56 | 4.35 | [URL] |
PV-RCNN++ | 80.55 | 53.31 | 70.92 | 95.92 | 75.18 | 14.66 | [URL] |
CenterPoint | 77.24 | 70.45 | 74.74 | 96.12 | 79.64 | 30.49 | [URL] |
CenterPoint_RCNN | 78.33 | 71.13 | 75.23 | 96.48 | 80.29 | 6.55 | [URL] |
Methods | Car [email protected] | Pedestrian [email protected] | Cyclist [email protected] | Truck [email protected] | mAP40 | FPS | Download Link |
---|---|---|---|---|---|---|---|
PointRCNN | 14.12 | 23.66 | 20.62 | 45.36 | 25.94 | 22.94 | [URL] |
Pointpillar | 44.77 | 33.18 | 31.42 | 82.52 | 47.97 | 87.72 | [URL] |
PV-RCNN++ | 43.49 | 34.60 | 39.94 | 76.04 | 48.52 | 16.67 | [URL] |
CenterPoint | 35.92 | 37.40 | 38.24 | 68.78 | 45.08 | 107.53 | [URL] |
Methods | Car [email protected] | Pedestrian [email protected] | Cyclist [email protected] | Truck [email protected] | mAP40 | FPS | Download Link |
---|---|---|---|---|---|---|---|
PointRCNN | 61.14 | 88.80 | 61.99 | 48.96 | 65.22 | 4.67 | [URL] |
Pointpillar | 67.34 | 23.82 | 43.51 | 91.59 | 56.57 | 25.25 | [URL] |
PV-RCNN++ | 72.59 | 45.26 | 61.21 | 91.02 | 67.52 | 13.81 | [URL] |
CenterPoint | 61.31 | 49.62 | 52.73 | 82.02 | 61.42 | 33.90 | [URL] |
Methods | Car [email protected] | Pedestrian [email protected] | Cyclist [email protected] | Truck [email protected] | mAP40 | FPS | Download Link |
---|---|---|---|---|---|---|---|
PointRCNN | 71.75 | 68.13 | 62.91 | 94.50 | 74.32 | 4.58 | [URL] |
Pointpillar | 78.04 | 35.34 | 58.46 | 95.86 | 66.93 | 24.33 | [URL] |
PV-RCNN++ | 80.55 | 53.31 | 70.92 | 95.92 | 75.18 | 12.45 | [URL] |
CenterPoint | 77.24 | 70.45 | 74.74 | 96.12 | 79.64 | 30.49 | [URL] |
Methods | Car [email protected] | Pedestrian [email protected] | Cyclist [email protected] | Truck [email protected] | mAP40 | FPS | Download Link |
---|---|---|---|---|---|---|---|
PointRCNN | 62.69 | 61.31 | 52.31 | 90.93 | 66.81 | 1.32 | [URL]+[URL] |
Pointpillar | 68.65 | 31.81 | 49.92 | 93.48 | 60.96 | 1.81 | [URL]+[URL] |
PV-RCNN++ | 68.01 | 53.47 | 56.95 | 92.65 | 67.77 | 1.21 | [URL]+[URL] |
CenterPoint | 58.13 | 50.03 | 56.01 | 85.65 | 62.45 | 6.40 | [URL]+[URL] |
Methods | Car [email protected] | Pedestrian [email protected] | Cyclist [email protected] | Truck [email protected] | mAP40 | FPS | Download Link |
---|---|---|---|---|---|---|---|
Point-RCNN | - | - | - | - | - | - | |
Pointpillar | - | - | - | - | - | - | |
PV-RCNN++ | 73.78 | 52.06 | 62.06 | 91.89 | 69.95 | 13.02 | [URL] |
CenterPoint | 52.74 | 38.95 | 51.19 | 81.73 | 56.15 | 15.85 | [URL] |
Source→Target | DAIR-V2X-I→KITTI | ONCE→KITTI | InScope→KITTI | InScope→DAIR-V2X-I | DAIR-V2X-I→InScope |
---|---|---|---|---|---|
mAP40 | mAP40 | mAP40 | mAP40 | AP40 | |
Source Domain | 37.98[URL] | 41.65[URL] | 52.97[URL] | 31.05[URL] | 32.16[URL] |
SN | 44.80[URL] | 49.34[URL] | 61.87[URL] | 31.81[URL] | 33.25[URL] |
ST3D | 65.35[URL] | 58.19[URL] | 74.63[URL] | 48.98[URL] | 37.03[URL] |
Target Domain | 81.63[URL] | 81.63[URL] | 81.63[URL] | 81.41[URL] | 71.75[URL] |
Tracking result of the AD3DMOT based on the InScope dataset on the car class (IoU threshold = 0.5/0.7)
Detector | sAMOTA↑ | MOTA↑ | IDSW↓ | FRAG↓ |
---|---|---|---|---|
PointRCNN | 74.81/60.34 | 63.25/44.45 | 12/6 | 595/1834 |
Pointpillar | 82.23/64.98 | 68.85/46.82 | 56/44 | 391/2166 |
PVRCNN++ | 81.63/68.71 | 67.56/50.72 | 83/39 | 386/1560 |
Centerpoint | 78.76/61.25 | 61.02/40.98 | 27/15 | 367/1720 |
Tracking result of the AD3DMOT based on the InScope-Pri dataset on the car class (IoU threshold = 0.5/0.7)
Detector | sAMOTA↑ | MOTA↑ | IDSW↓ | FRAG↓ |
---|---|---|---|---|
PointRCNN | 61.14/44.91 | 55.04/35.34 | 42/31 | 1319/2406 |
Pointpillar | 74.02/51.81 | 66.89/37.84 | 154/63 | 1820/3138 |
PVRCNN++ | 73.47/57.82 | 54.98/37.94 | 378/99 | 914/1524 |
Centerpoint | 76.01/49.32 | 61.89/31.07 | 103/49 | 717/2151 |
Tracking result of the AD3DMOT based on the InScope dataset on the pedestrian class (IoU threshold = 0.25/0.5)
Detector | sAMOTA↑ | MOTA↑ | IDSW↓ | FRAG↓ |
---|---|---|---|---|
PointRCNN | 59.89/56.59 | 39.73/37.06 | 1/1 | 6/22 |
Pointpillar | 32.09/27.42 | 27.79/25.36 | 0/0 | 4/24 |
PVRCNN++ | 31.39/28.54 | 27.71/25.75 | 3/3 | 10/20 |
Centerpoint | 67.38/62.03 | 63.48/59.30 | 5/4 | 8/35 |
Tracking result of the AD3DMOT based on the InScope-Pri dataset on the pedestrian class (IoU threshold = 0.25/0.5)
Detector | sAMOTA↑ | MOTA↑ | IDSW↓ | FRAG↓ |
---|---|---|---|---|
PointRCNN | 78.76/72.65 | 67.61/60.94 | 1/1 | 189/241 |
Pointpillar | 78.14/72.78 | 68.68/61.43 | 7/6 | 130/321 |
PVRCNN++ | 73.76/67.67 | 58.18/51.61 | 25/1 | 2121/205 |
Centerpoint | 75.37/64.27 | 65.03/53.43 | 10/7 | 298/500 |
Tracking result of the AD3DMOT based on the InScope dataset on the cyclist class (IoU threshold = 0.25/0.5)
Detector | sAMOTA↑ | MOTA | IDSW↓ | FRAG↓ |
---|---|---|---|---|
PointRCNN | 60.97/50.27 | 41.56/33.77 | 10/13 | 99/272 |
Pointpillar | 49.96/33.75 | 33.82/22.33 | 3/13 | 64/379 |
PVRCNN++ | 63.00/52.65 | 43.22/34.12 | 126/82 | 177/349 |
Centerpoint | 68.78/57.50 | 45.42/37.58 | 6/16 | 70/267 |
Tracking result of the AD3DMOT based on the InScope-Pri dataset on the cyclist class (IoU threshold = 0.25/0.5)
Detector | sAMOTA↑ | MOTA↑ | IDSW↓ | FRAG↓ |
---|---|---|---|---|
PointRCNN | 38.31/25.57 | 27.68/18.74 | 31/27 | 302/595 |
Pointpillar | 27.90/9.46 | 19.41/5.58 | 22/12 | 272/275 |
PVRCNN++ | 23.27/17.06 | 12.37/10.44 | 48/32 | 151/140 |
Centerpoint | 55.81/34.88 | 38.70/19.55 | 46/19 | 198/613 |
Tracking result of the AD3DMOT based on the InScope dataset on the truck class (IoU threshold = 0.5/0.7)
Detector | sAMOTA↑ | MOTA↑ | IDSW↓ | FRAG↓ |
---|---|---|---|---|
PointRCNN | 82.53/78.67 | 73.34/68.20 | 3/2 | 124/181 |
Pointpillar | 82.18/76.79 | 75.26/70.33 | 9/8 | 80/182 |
PVRCNN++ | 81.50/77.20 | 69.15/64.53 | 9/8 | 76/141 |
Centerpoint | 81.44/76.11 | 71.89/65.85 | 7/7 | 70/207 |
Tracking result of the AD3DMOT based on the InScope-Pri dataset on the truck class (IoU threshold = 0.5/0.7)
Detector | sAMOTA↑ | MOTA↑ | IDSW↓ | FRAG↓ |
---|---|---|---|---|
PointRCNN | 78.76/72.65 | 67.61/60.94 | 1/1 | 189/241 |
Pointpillar | 78.14/72.78 | 68.68/61.43 | 7/6 | 130/321 |
PVRCNN++ | 73.76/67.67 | 58.18/51.61 | 25/1 | 2121/205 |
Centerpoint | 75.37/64.27 | 65.03/53.43 | 10/7 | 298/500 |
The code and configuration of 3DMOT on the InScope dataset will be released.
If you find InScope useful in your research or applications, please consider giving us a star 🌟.