Matalb implementation for IEEE TKDE paper:
Weixuan liang, Sihang Zhou, Jian Xiong, Xinwang Liu, et al. Multi-View Spectral Clustering with HighOrder Optimal Neighborhood Laplacian Matrix[J], IEEE Transactions on Knowledge and Data Engineering, 2020, DOI:10.1109/TKDE. 2020.3025100.
If you find our code useful, please cite:
@ARTICLE{9200798, author={W. {Liang} and S. {Zhou} and J. {Xiong} and X. {Liu} and S. {Wang} and E. {Zhu} and Z. {Cai} and X. {Xu}}, journal={IEEE Transactions on Knowledge and Data Engineering}, title={Multi-View Spectral Clustering with High-Order Optimal Neighborhood Laplacian Matrix}, year={2020}, volume={}, number={}, pages={1-1}, doi={10.1109/TKDE.2020.3025100}}
main function: multi_spectral_latefusion_demo.m
datasets: flower17_Kmatrix.mat
Please run .\eigs\feature_save.m to generate the 1st-order and 2nd-order cluster indicating matrices.