Skip to content
/ kapao Public

KAPAO is an efficient single-stage human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.

License

Notifications You must be signed in to change notification settings

wmcnally/kapao

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

KAPAO (Keypoints and Poses as Objects)

Accepted to ECCV 2022

KAPAO is an efficient single-stage multi-person human pose estimation method that models keypoints and poses as objects within a dense anchor-based detection framework. KAPAO simultaneously detects pose objects and keypoint objects and fuses the detections to predict human poses:

alt text

When not using test-time augmentation (TTA), KAPAO is much faster and more accurate than previous single-stage methods like DEKR, HigherHRNet, HigherHRNet + SWAHR, and CenterGroup:

alt text

This repository contains the official PyTorch implementation for the paper:
Rethinking Keypoint Representations: Modeling Keypoints and Poses as Objects for Multi-Person Human Pose Estimation.

Our code was forked from ultralytics/yolov5 at commit 5487451.

Setup

  1. If you haven't already, install Anaconda or Miniconda.
  2. Create a new conda environment with Python 3.6: $ conda create -n kapao python=3.6.
  3. Activate the environment: $ conda activate kapao
  4. Clone this repo: $ git clone https://github.com/wmcnally/kapao.git
  5. Install the dependencies: $ cd kapao && pip install -r requirements.txt
  6. Download the trained models: $ python data/scripts/download_models.py

Inference Demos

Note: FPS calculations include all processing (i.e., including image loading, resizing, inference, plotting / tracking, etc.). See script arguments for inference options.


Static Image

To generate the four images in the GIF above:

  1. $ python demos/image.py --bbox
  2. $ python demos/image.py --bbox --pose --face --no-kp-dets
  3. $ python demos/image.py --bbox --pose --face --no-kp-dets --kp-bbox
  4. $ python demos/image.py --pose --face

Shuffling Video

KAPAO runs fastest on low resolution video with few people in the frame. This demo runs KAPAO-S on a single-person 480p dance video using an input size of 1024. The inference speed is ~9.5 FPS on our CPU, and ~60 FPS on our TITAN Xp.

CPU inference:
alt text

To display the results in real-time:
$ python demos/video.py --face --display

To create the GIF above:
$ python demos/video.py --face --device cpu --gif

CPU specs:
Intel Core i7-8700K
16GB DDR4 3000MHz
Samsung 970 Pro M.2 NVMe SSD


Flash Mob Video

This demo runs KAPAO-S on a 720p flash mob video using an input size of 1280.

GPU inference:
alt text

To display the results in real-time:
$ python demos/video.py --yt-id 2DiQUX11YaY --tag 136 --imgsz 1280 --color 255 0 255 --start 188 --end 196 --display

To create the GIF above:
$ python demos/video.py --yt-id 2DiQUX11YaY --tag 136 --imgsz 1280 --color 255 0 255 --start 188 --end 196 --gif


Red Light Green Light

This demo runs KAPAO-L on a 480p clip from the TV show Squid Game using an input size of 1024. The plotted poses constitute keypoint objects only.

GPU inference:
alt text

To display the results in real-time:
$ python demos/video.py --yt-id nrchfeybHmw --imgsz 1024 --weights kapao_l_coco.pt --conf-thres-kp 0.01 --kp-obj --face --start 56 --end 72 --display

To create the GIF above:
$ python demos/video.py --yt-id nrchfeybHmw --imgsz 1024 --weights kapao_l_coco.pt --conf-thres-kp 0.01 --kp-obj --face --start 56 --end 72 --gif


Squash Video

This demo runs KAPAO-S on a 1080p slow motion squash video. It uses a simple player tracking algorithm based on the frame-to-frame pose differences.

GPU inference:
alt text

To display the inference results in real-time:
$ python demos/squash.py --display --fps

To create the GIF above:
$ python demos/squash.py --start 42 --end 50 --gif --fps


Depth Video

Pose objects generalize well and can even be detected in depth video. Here KAPAO-S was run on a depth video from a fencing action recognition dataset.

alt text

The depth video above can be downloaded directly from here. To create the GIF above:
$ python demos/video.py -p 2016-01-04_21-33-35_Depth.avi --face --start 0 --end -1 --gif --gif-size 480 360


Web Demo

A web demo was integrated to Huggingface Spaces with Gradio (credit to @AK391). It uses KAPAO-S to run CPU inference on short video clips.

COCO Experiments

Download the COCO dataset: $ sh data/scripts/get_coco_kp.sh

Validation (without TTA)

  • KAPAO-S (63.0 AP): $ python val.py --rect
  • KAPAO-M (68.5 AP): $ python val.py --rect --weights kapao_m_coco.pt
  • KAPAO-L (70.6 AP): $ python val.py --rect --weights kapao_l_coco.pt

Validation (with TTA)

  • KAPAO-S (64.3 AP): $ python val.py --scales 0.8 1 1.2 --flips -1 3 -1
  • KAPAO-M (69.6 AP): $ python val.py --weights kapao_m_coco.pt \
    --scales 0.8 1 1.2 --flips -1 3 -1
  • KAPAO-L (71.6 AP): $ python val.py --weights kapao_l_coco.pt \
    --scales 0.8 1 1.2 --flips -1 3 -1

Testing

  • KAPAO-S (63.8 AP): $ python val.py --scales 0.8 1 1.2 --flips -1 3 -1 --task test
  • KAPAO-M (68.8 AP): $ python val.py --weights kapao_m_coco.pt \
    --scales 0.8 1 1.2 --flips -1 3 -1 --task test
  • KAPAO-L (70.3 AP): $ python val.py --weights kapao_l_coco.pt \
    --scales 0.8 1 1.2 --flips -1 3 -1 --task test

Training

The following commands were used to train the KAPAO models on 4 V100s with 32GB memory each.

KAPAO-S:

python -m torch.distributed.launch --nproc_per_node 4 train.py \
--img 1280 \
--batch 128 \
--epochs 500 \
--data data/coco-kp.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5s6.pt \
--project runs/s_e500 \
--name train \
--workers 128

KAPAO-M:

python train.py \
--img 1280 \
--batch 72 \
--epochs 500 \
--data data/coco-kp.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5m6.pt \
--project runs/m_e500 \
--name train \
--workers 128

KAPAO-L:

python train.py \
--img 1280 \
--batch 48 \
--epochs 500 \
--data data/coco-kp.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5l6.pt \
--project runs/l_e500 \
--name train \
--workers 128

Note: DDP is usually recommended but we found training was less stable for KAPAO-M/L using DDP. We are investigating this issue.

CrowdPose Experiments

  • Install the CrowdPose API to your conda environment:
    $ cd .. && git clone https://github.com/Jeff-sjtu/CrowdPose.git
    $ cd CrowdPose/crowdpose-api/PythonAPI && sh install.sh && cd ../../../kapao
  • Download the CrowdPose dataset: $ sh data/scripts/get_crowdpose.sh

Testing

  • KAPAO-S (63.8 AP): $ python val.py --data crowdpose.yaml \
    --weights kapao_s_crowdpose.pt --scales 0.8 1 1.2 --flips -1 3 -1
  • KAPAO-M (67.1 AP): $ python val.py --data crowdpose.yaml \
    --weights kapao_m_crowdpose.pt --scales 0.8 1 1.2 --flips -1 3 -1
  • KAPAO-L (68.9 AP): $ python val.py --data crowdpose.yaml \
    --weights kapao_l_crowdpose.pt --scales 0.8 1 1.2 --flips -1 3 -1

Training

The following commands were used to train the KAPAO models on 4 V100s with 32GB memory each. Training was performed on the trainval split with no validation. The test results above were generated using the last model checkpoint.

KAPAO-S:

python -m torch.distributed.launch --nproc_per_node 4 train.py \
--img 1280 \
--batch 128 \
--epochs 300 \
--data data/crowdpose.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5s6.pt \
--project runs/cp_s_e300 \
--name train \
--workers 128 \
--noval

KAPAO-M:

python train.py \
--img 1280 \
--batch 72 \
--epochs 300 \
--data data/crowdpose.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5m6.pt \
--project runs/cp_m_e300 \
--name train \
--workers 128 \
--noval

KAPAO-L:

python train.py \
--img 1280 \
--batch 48 \
--epochs 300 \
--data data/crowdpose.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5l6.pt \
--project runs/cp_l_e300 \
--name train \
--workers 128 \
--noval

Acknowledgements

This work was supported in part by Compute Canada, the Canada Research Chairs Program, the Natural Sciences and Engineering Research Council of Canada, a Microsoft Azure Grant, and an NVIDIA Hardware Grant.

If you find this repo is helpful in your research, please cite our paper:

@article{mcnally2021kapao,
  title={Rethinking Keypoint Representations: Modeling Keypoints and Poses as Objects for Multi-Person Human Pose Estimation},
  author={McNally, William and Vats, Kanav and Wong, Alexander and McPhee, John},
  journal={arXiv preprint arXiv:2111.08557},
  year={2021}
}

Please also consider citing our previous works:

@inproceedings{mcnally2021deepdarts,
  title={DeepDarts: Modeling Keypoints as Objects for Automatic Scorekeeping in Darts using a Single Camera},
  author={McNally, William and Walters, Pascale and Vats, Kanav and Wong, Alexander and McPhee, John},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={4547--4556},
  year={2021}
}

@article{mcnally2021evopose2d,
  title={EvoPose2D: Pushing the Boundaries of 2D Human Pose Estimation Using Accelerated Neuroevolution With Weight Transfer},
  author={McNally, William and Vats, Kanav and Wong, Alexander and McPhee, John},
  journal={IEEE Access},
  volume={9},
  pages={139403--139414},
  year={2021},
  publisher={IEEE}
}

About

KAPAO is an efficient single-stage human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published