Skip to content

whffams2/STIP

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Semantic-aware Transfer with Instance-adaptive Parsing for Crowded Scenes Pose Estimation

This is an official implementation of Semantic-aware Transfer with Instance-adaptive Parsing for Crowded Scenes Pose Estimation

This repo is built on deep-high-resolution-net.

Main Results

Results on CrowdPose test set

Method Backbone Input size AP Ap@50 AP@75 AP (Easy) AP (Medium) AP (Hard)
HRNet HRNet-w32 256 x 192 71.7 89.8 76.9 79.6 72.7 61.5
HRNet + STIP HRNet-w32 256 x 192 74.1 90.0 79.9 81.6 75.1 64.3
HRNet HRNet-w48 256 x 192 73.3 90.0 78.7 81.0 74.4 63.4
HRNet + STIP HRNet-w48 256 x 192 74.8 90.8 80.1 82.0 75.7 65.0

Results on COCO val set

Method Backbone Input size AP Ap@50 AP@75 AP (Small) AP (Medium) AP (Large)
HRNet HRNet-w32 256 x 192 74.4 90.5 81.9 70.8 81.0 79.8
HRNet + STIP HRNet-w32 256 x 192 75.8 90.3 82.4 72.1 82.4 80.8
HRNet HRNet-w48 256 x 192 75.1 90.6 82.2 71.5 81.8 80.4
HRNet + STIP HRNet-w48 256 x 192 76.0 90.4 82.2 72.2 82.9 81.1

Installation

The environment can be referred to README.md.

The details about dataset can be referred to README.md.

Downlaod pretrained weights from BaidunYun(Password: cr1x) to ./models.

Testing on CrowdPose dataset using pretrained weights

Testing HRNet

python tools/script_test.py \
    --cfg experiments/crowdpose/hrnet/w32_256x192_adam_lr1e-3.yaml \
    TEST.MODEL_FILE models/pytorch/crowdpose/hrnet_w32_256x192.pth

Testing STIP net

python tools/script_test.py \
    --cfg experiments/crowdpose/partnet/stipnet_w32_256x192_adam_lr1e-3.yaml \
    TEST.MODEL_FILE models/pytorch/crowdpose/stipnet_w32_256x192.pth

Training on CrowdPose dataset

python tools/script_train.py \
    --cfg experiments/crowdpose/partnet/stipnet_w32_256x192_adam_lr1e-3.yaml 

Citation

If you find this work or code is helpful in your research, please cite:

@inproceedings{pose:stip,
	author={Xuanhan Wang and Lianli Gao and Yan Dai and Yixuan Zhou and Jingkuan Song},
	title={Semantic-aware Transfer with Instance-adaptive Parsing for Crowded Scenes Pose Estimation},
	pages={686--694},
	booktitle = {ACM MM},
	year={2021}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 55.1%
  • Cuda 44.3%
  • Other 0.6%