This is an official implementation of Semantic-aware Transfer with Instance-adaptive Parsing for Crowded Scenes Pose Estimation
This repo is built on deep-high-resolution-net.
Method | Backbone | Input size | AP | Ap@50 | AP@75 | AP (Easy) | AP (Medium) | AP (Hard) |
---|---|---|---|---|---|---|---|---|
HRNet | HRNet-w32 | 256 x 192 | 71.7 | 89.8 | 76.9 | 79.6 | 72.7 | 61.5 |
HRNet + STIP | HRNet-w32 | 256 x 192 | 74.1 | 90.0 | 79.9 | 81.6 | 75.1 | 64.3 |
HRNet | HRNet-w48 | 256 x 192 | 73.3 | 90.0 | 78.7 | 81.0 | 74.4 | 63.4 |
HRNet + STIP | HRNet-w48 | 256 x 192 | 74.8 | 90.8 | 80.1 | 82.0 | 75.7 | 65.0 |
Method | Backbone | Input size | AP | Ap@50 | AP@75 | AP (Small) | AP (Medium) | AP (Large) |
---|---|---|---|---|---|---|---|---|
HRNet | HRNet-w32 | 256 x 192 | 74.4 | 90.5 | 81.9 | 70.8 | 81.0 | 79.8 |
HRNet + STIP | HRNet-w32 | 256 x 192 | 75.8 | 90.3 | 82.4 | 72.1 | 82.4 | 80.8 |
HRNet | HRNet-w48 | 256 x 192 | 75.1 | 90.6 | 82.2 | 71.5 | 81.8 | 80.4 |
HRNet + STIP | HRNet-w48 | 256 x 192 | 76.0 | 90.4 | 82.2 | 72.2 | 82.9 | 81.1 |
The environment can be referred to README.md.
The details about dataset can be referred to README.md.
Downlaod pretrained weights from BaidunYun(Password: cr1x) to ./models.
Testing HRNet
python tools/script_test.py \
--cfg experiments/crowdpose/hrnet/w32_256x192_adam_lr1e-3.yaml \
TEST.MODEL_FILE models/pytorch/crowdpose/hrnet_w32_256x192.pth
Testing STIP net
python tools/script_test.py \
--cfg experiments/crowdpose/partnet/stipnet_w32_256x192_adam_lr1e-3.yaml \
TEST.MODEL_FILE models/pytorch/crowdpose/stipnet_w32_256x192.pth
python tools/script_train.py \
--cfg experiments/crowdpose/partnet/stipnet_w32_256x192_adam_lr1e-3.yaml
If you find this work or code is helpful in your research, please cite:
@inproceedings{pose:stip,
author={Xuanhan Wang and Lianli Gao and Yan Dai and Yixuan Zhou and Jingkuan Song},
title={Semantic-aware Transfer with Instance-adaptive Parsing for Crowded Scenes Pose Estimation},
pages={686--694},
booktitle = {ACM MM},
year={2021}
}