Skip to content

Commit

Permalink
[Feature] support mim (open-mmlab#549)
Browse files Browse the repository at this point in the history
* dice loss

* format code, add docstring and calculate denominator without valid_mask

* minor change

* restore

* add metafile

* add manifest.in and add config at setup.py

* add requirements

* modify manifest

* modify manifest

* Update MANIFEST.in

* add metafile

* add metadata

* fix typo

* Update metafile.yml

* Update metafile.yml

* minor change

* Update metafile.yml

* add subfix

* fix mmshow

* add more  metafile

* add config to model_zoo

* fix bug

* Update mminstall.txt

* [fix] Add models

* [Fix] Add collections

* [fix] Modify collection name

* [Fix] Set datasets to unet metafile

* [Fix] Modify collection names

* complement inference time
  • Loading branch information
谢昕辰 authored May 31, 2021
1 parent dc5d53b commit a95f6d8
Show file tree
Hide file tree
Showing 31 changed files with 5,566 additions and 0 deletions.
5 changes: 5 additions & 0 deletions MANIFEST.in
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@

include requirements/*.txt
include mmseg/model_zoo.yml
recursive-include mmseg/configs *.py *.yml
recursive-include mmseg/tools *.sh *.py
231 changes: 231 additions & 0 deletions configs/ann/metafile.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,231 @@
Collections:
- Name: ANN
Metadata:
Training Data:
- Cityscapes
- Pascal VOC 2012 + Aug
- ADE20K

Models:

- Name: ann_r50-d8_512x1024_40k_cityscapes
In Collection: ANN
Metadata:
inference time (fps): 3.71
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.40
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x1024_40k_cityscapes/ann_r50-d8_512x1024_40k_cityscapes_20200605_095211-049fc292.pth
Config: configs/ann/ann_r50-d8_512x1024_40k_cityscapes.py



- Name: ann_r101-d8_512x1024_40k_cityscapes
In Collection: ANN
Metadata:
inference time (fps): 2.55
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 76.55
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x1024_40k_cityscapes/ann_r101-d8_512x1024_40k_cityscapes_20200605_095243-adf6eece.pth
Config: configs/ann/ann_r101-d8_512x1024_40k_cityscapes.py



- Name: ann_r50-d8_769x769_40k_cityscapes
In Collection: ANN
Metadata:
inference time (fps): 1.70
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.89
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_769x769_40k_cityscapes/ann_r50-d8_769x769_40k_cityscapes_20200530_025712-2b46b04d.pth
Config: configs/ann/ann_r50-d8_769x769_40k_cityscapes.py



- Name: ann_r101-d8_769x769_40k_cityscapes
In Collection: ANN
Metadata:
inference time (fps): 1.15
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.32
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_769x769_40k_cityscapes/ann_r101-d8_769x769_40k_cityscapes_20200530_025720-059bff28.pth
Config: configs/ann/ann_r101-d8_769x769_40k_cityscapes.py



- Name: ann_r50-d8_512x1024_80k_cityscapes
In Collection: ANN
Metadata:
inference time (fps): 3.71
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.34
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x1024_80k_cityscapes/ann_r50-d8_512x1024_80k_cityscapes_20200607_101911-5a9ad545.pth
Config: configs/ann/ann_r50-d8_512x1024_80k_cityscapes.py



- Name: ann_r101-d8_512x1024_80k_cityscapes
In Collection: ANN
Metadata:
inference time (fps): 2.55
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.14
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x1024_80k_cityscapes/ann_r101-d8_512x1024_80k_cityscapes_20200607_013728-aceccc6e.pth
Config: configs/ann/ann_r101-d8_512x1024_80k_cityscapes.py



- Name: ann_r50-d8_769x769_80k_cityscapes
In Collection: ANN
Metadata:
inference time (fps): 1.70
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.88
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_769x769_80k_cityscapes/ann_r50-d8_769x769_80k_cityscapes_20200607_044426-cc7ff323.pth
Config: configs/ann/ann_r50-d8_769x769_80k_cityscapes.py



- Name: ann_r101-d8_769x769_80k_cityscapes
In Collection: ANN
Metadata:
inference time (fps):
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.80
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_769x769_80k_cityscapes/ann_r101-d8_769x769_80k_cityscapes_20200607_013713-a9d4be8d.pth
Config: configs/ann/ann_r101-d8_769x769_80k_cityscapes.py



- Name: ann_r50-d8_512x512_80k_ade20k
In Collection: ANN
Metadata:
inference time (fps): 21.01
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 41.01
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_80k_ade20k/ann_r50-d8_512x512_80k_ade20k_20200615_014818-26f75e11.pth
Config: configs/ann/ann_r50-d8_512x512_80k_ade20k.py



- Name: ann_r101-d8_512x512_80k_ade20k
In Collection: ANN
Metadata:
inference time (fps): 14.12
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 42.94
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_80k_ade20k/ann_r101-d8_512x512_80k_ade20k_20200615_014818-c0153543.pth
Config: configs/ann/ann_r101-d8_512x512_80k_ade20k.py



- Name: ann_r50-d8_512x512_160k_ade20k
In Collection: ANN
Metadata:
inference time (fps): 21.01
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 41.74
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_160k_ade20k/ann_r50-d8_512x512_160k_ade20k_20200615_231733-892247bc.pth
Config: configs/ann/ann_r50-d8_512x512_160k_ade20k.py



- Name: ann_r101-d8_512x512_160k_ade20k
In Collection: ANN
Metadata:
inference time (fps): 14.12
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 42.94
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_160k_ade20k/ann_r101-d8_512x512_160k_ade20k_20200615_231733-955eb1ec.pth
Config: configs/ann/ann_r101-d8_512x512_160k_ade20k.py



- Name: ann_r50-d8_512x512_20k_voc12aug
In Collection: ANN
Metadata:
inference time (fps): 20.92
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 74.86
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_20k_voc12aug/ann_r50-d8_512x512_20k_voc12aug_20200617_222246-dfcb1c62.pth
Config: configs/ann/ann_r50-d8_512x512_20k_voc12aug.py



- Name: ann_r101-d8_512x512_20k_voc12aug
In Collection: ANN
Metadata:
inference time (fps): 13.94
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 77.47
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_20k_voc12aug/ann_r101-d8_512x512_20k_voc12aug_20200617_222246-2fad0042.pth
Config: configs/ann/ann_r101-d8_512x512_20k_voc12aug.py



- Name: ann_r50-d8_512x512_40k_voc12aug
In Collection: ANN
Metadata:
inference time (fps): 20.92
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 76.56
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_40k_voc12aug/ann_r50-d8_512x512_40k_voc12aug_20200613_231314-b5dac322.pth
Config: configs/ann/ann_r50-d8_512x512_40k_voc12aug.py



- Name: ann_r101-d8_512x512_40k_voc12aug
In Collection: ANN
Metadata:
inference time (fps): 13.94
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 76.70
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_40k_voc12aug/ann_r101-d8_512x512_40k_voc12aug_20200613_231314-bd205bbe.pth
Config: configs/ann/ann_r101-d8_512x512_40k_voc12aug.py
Loading

0 comments on commit a95f6d8

Please sign in to comment.