Skip to content

Commit

Permalink
update metafiles (open-mmlab#661)
Browse files Browse the repository at this point in the history
* update metafiles

* update metafiles
  • Loading branch information
Junjun2016 authored Jul 1, 2021
1 parent 170a9d1 commit 36c8144
Show file tree
Hide file tree
Showing 28 changed files with 2,304 additions and 384 deletions.
112 changes: 96 additions & 16 deletions configs/ann/metafile.yml
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,12 @@ Models:
- Name: ann_r50-d8_512x1024_40k_cityscapes
In Collection: ANN
Metadata:
inference time (ms/im): 269.54
inference time (ms/im):
- value: 269.54
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Expand All @@ -25,7 +30,12 @@ Models:
- Name: ann_r101-d8_512x1024_40k_cityscapes
In Collection: ANN
Metadata:
inference time (ms/im): 392.16
inference time (ms/im):
- value: 392.16
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Expand All @@ -39,7 +49,12 @@ Models:
- Name: ann_r50-d8_769x769_40k_cityscapes
In Collection: ANN
Metadata:
inference time (ms/im): 588.24
inference time (ms/im):
- value: 588.24
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Expand All @@ -53,7 +68,12 @@ Models:
- Name: ann_r101-d8_769x769_40k_cityscapes
In Collection: ANN
Metadata:
inference time (ms/im): 869.57
inference time (ms/im):
- value: 869.57
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Expand All @@ -67,7 +87,12 @@ Models:
- Name: ann_r50-d8_512x1024_80k_cityscapes
In Collection: ANN
Metadata:
inference time (ms/im): 269.54
inference time (ms/im):
- value: 269.54
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Expand All @@ -81,7 +106,12 @@ Models:
- Name: ann_r101-d8_512x1024_80k_cityscapes
In Collection: ANN
Metadata:
inference time (ms/im): 392.16
inference time (ms/im):
- value: 392.16
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Expand All @@ -95,7 +125,12 @@ Models:
- Name: ann_r50-d8_769x769_80k_cityscapes
In Collection: ANN
Metadata:
inference time (ms/im): 588.24
inference time (ms/im):
- value: 588.24
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Expand All @@ -109,7 +144,12 @@ Models:
- Name: ann_r101-d8_769x769_80k_cityscapes
In Collection: ANN
Metadata:
inference time (ms/im): 869.57
inference time (ms/im):
- value: 869.57
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Expand All @@ -123,7 +163,12 @@ Models:
- Name: ann_r50-d8_512x512_80k_ade20k
In Collection: ANN
Metadata:
inference time (ms/im): 47.6
inference time (ms/im):
- value: 47.6
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Expand All @@ -137,7 +182,12 @@ Models:
- Name: ann_r101-d8_512x512_80k_ade20k
In Collection: ANN
Metadata:
inference time (ms/im): 70.82
inference time (ms/im):
- value: 70.82
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Expand All @@ -151,7 +201,12 @@ Models:
- Name: ann_r50-d8_512x512_160k_ade20k
In Collection: ANN
Metadata:
inference time (ms/im): 47.6
inference time (ms/im):
- value: 47.6
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Expand All @@ -165,7 +220,12 @@ Models:
- Name: ann_r101-d8_512x512_160k_ade20k
In Collection: ANN
Metadata:
inference time (ms/im): 70.82
inference time (ms/im):
- value: 70.82
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Expand All @@ -179,7 +239,12 @@ Models:
- Name: ann_r50-d8_512x512_20k_voc12aug
In Collection: ANN
Metadata:
inference time (ms/im): 47.8
inference time (ms/im):
- value: 47.8
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Expand All @@ -193,7 +258,12 @@ Models:
- Name: ann_r101-d8_512x512_20k_voc12aug
In Collection: ANN
Metadata:
inference time (ms/im): 71.74
inference time (ms/im):
- value: 71.74
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Expand All @@ -207,7 +277,12 @@ Models:
- Name: ann_r50-d8_512x512_40k_voc12aug
In Collection: ANN
Metadata:
inference time (ms/im): 47.8
inference time (ms/im):
- value: 47.8
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Expand All @@ -221,7 +296,12 @@ Models:
- Name: ann_r101-d8_512x512_40k_voc12aug
In Collection: ANN
Metadata:
inference time (ms/im): 71.74
inference time (ms/im):
- value: 71.74
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Expand Down
84 changes: 72 additions & 12 deletions configs/apcnet/metafile.yml
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,12 @@ Models:
- Name: apcnet_r50-d8_512x1024_40k_cityscapes
In Collection: APCNet
Metadata:
inference time (ms/im): 280.11
inference time (ms/im):
- value: 280.11
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Expand All @@ -24,7 +29,12 @@ Models:
- Name: apcnet_r101-d8_512x1024_40k_cityscapes
In Collection: APCNet
Metadata:
inference time (ms/im): 465.12
inference time (ms/im):
- value: 465.12
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Expand All @@ -38,7 +48,12 @@ Models:
- Name: apcnet_r50-d8_769x769_40k_cityscapes
In Collection: APCNet
Metadata:
inference time (ms/im): 657.89
inference time (ms/im):
- value: 657.89
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Expand All @@ -52,7 +67,12 @@ Models:
- Name: apcnet_r101-d8_769x769_40k_cityscapes
In Collection: APCNet
Metadata:
inference time (ms/im): 970.87
inference time (ms/im):
- value: 970.87
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Expand All @@ -66,7 +86,12 @@ Models:
- Name: apcnet_r50-d8_512x1024_80k_cityscapes
In Collection: APCNet
Metadata:
inference time (ms/im): 280.11
inference time (ms/im):
- value: 280.11
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Expand All @@ -80,7 +105,12 @@ Models:
- Name: apcnet_r101-d8_512x1024_80k_cityscapes
In Collection: APCNet
Metadata:
inference time (ms/im): 465.12
inference time (ms/im):
- value: 465.12
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Expand All @@ -94,7 +124,12 @@ Models:
- Name: apcnet_r50-d8_769x769_80k_cityscapes
In Collection: APCNet
Metadata:
inference time (ms/im): 657.89
inference time (ms/im):
- value: 657.89
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Expand All @@ -108,7 +143,12 @@ Models:
- Name: apcnet_r101-d8_769x769_80k_cityscapes
In Collection: APCNet
Metadata:
inference time (ms/im): 970.87
inference time (ms/im):
- value: 970.87
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Expand All @@ -122,7 +162,12 @@ Models:
- Name: apcnet_r50-d8_512x512_80k_ade20k
In Collection: APCNet
Metadata:
inference time (ms/im): 50.99
inference time (ms/im):
- value: 50.99
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Expand All @@ -136,7 +181,12 @@ Models:
- Name: apcnet_r101-d8_512x512_80k_ade20k
In Collection: APCNet
Metadata:
inference time (ms/im): 76.34
inference time (ms/im):
- value: 76.34
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Expand All @@ -150,7 +200,12 @@ Models:
- Name: apcnet_r50-d8_512x512_160k_ade20k
In Collection: APCNet
Metadata:
inference time (ms/im): 50.99
inference time (ms/im):
- value: 50.99
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Expand All @@ -164,7 +219,12 @@ Models:
- Name: apcnet_r101-d8_512x512_160k_ade20k
In Collection: APCNet
Metadata:
inference time (ms/im): 76.34
inference time (ms/im):
- value: 76.34
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Expand Down
Loading

0 comments on commit 36c8144

Please sign in to comment.