Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

support gpu for cli #2101

Merged
merged 2 commits into from
Nov 2, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 10 additions & 0 deletions docs/python_package.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,15 @@
pip install git+https://github.com/wenet-e2e/wenet.git
```

## Development Install

``` sh
git clone https://github.com/wenet-e2e/wenet.git
cd wenet
pip install -e .
```


## Command line Usage

``` sh
Expand All @@ -17,6 +26,7 @@ You can specify the following parameters.

* `-l` or `--language`: chinese/english are supported now.
* `-m` or `--model_dir`: your own model dir
* `-g` or `--gpu`: the device id of gpu, default value -1 represents for cpu.
* `-t` or `--show_tokens_info`: show the token level information such as timestamp, confidence, etc.


Expand Down
20 changes: 16 additions & 4 deletions wenet/cli/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,16 +27,23 @@


class Model:
def __init__(self, model_dir: str):
def __init__(self, model_dir: str, gpu: int = -1):
model_path = os.path.join(model_dir, 'final.zip')
units_path = os.path.join(model_dir, 'units.txt')
self.model = torch.jit.load(model_path)
if gpu >= 0:
device = 'cuda:{}'.format(gpu)
else:
device = 'cpu'
self.device = torch.device(device)
self.model = self.model.to(self.device)
self.symbol_table = read_symbol_table(units_path)
self.char_dict = {v: k for k, v in self.symbol_table.items()}

def compute_feats(self, audio_file: str) -> torch.Tensor:
waveform, sample_rate = torchaudio.load(audio_file, normalize=False)
waveform = waveform.to(torch.float)
waveform = waveform.to(self.device)
feats = kaldi.fbank(waveform,
num_mel_bins=80,
frame_length=25,
Expand All @@ -52,7 +59,10 @@ def _decode(self,
label: str = None) -> dict:
feats = self.compute_feats(audio_file)
encoder_out, _, _ = self.model.forward_encoder_chunk(feats, 0, -1)
encoder_lens = torch.tensor([encoder_out.size(1)], dtype=torch.long)
encoder_lens = torch.tensor([
encoder_out.size(1)],
dtype=torch.long,
device=encoder_out.device)
ctc_probs = self.model.ctc_activation(encoder_out)
if label is None:
ctc_prefix_results = ctc_prefix_beam_search(
Expand Down Expand Up @@ -117,7 +127,9 @@ def align(self, audio_file: str, label: str) -> dict:
return self._decode(audio_file, True, label)


def load_model(language: str = None, model_dir: str = None) -> Model:
def load_model(language: str = None,
model_dir: str = None,
gpu: int = -1) -> Model:
if model_dir is None:
model_dir = Hub.get_model_by_lang(language)
return Model(model_dir)
return Model(model_dir, gpu)
19 changes: 14 additions & 5 deletions wenet/cli/paraformer_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,26 +11,35 @@

class Paraformer:

def __init__(self, model_dir: str) -> None:
def __init__(self, model_dir: str, device: int = -1) -> None:

model_path = os.path.join(model_dir, 'final.zip')
units_path = os.path.join(model_dir, 'units.txt')
self.model = torch.jit.load(model_path)
if device >= 0:
device = 'cuda:{}'.format(device)
else:
device = 'cpu'
self.device = torch.device(device)
self.model = self.model.to(self.device)
symbol_table = read_symbol_table(units_path)
self.char_dict = {v: k for k, v in symbol_table.items()}
self.eos = 2

def transcribe(self, audio_file: str, tokens_info: bool = False) -> dict:
waveform, sample_rate = torchaudio.load(audio_file, normalize=False)
waveform = waveform.to(torch.float)
waveform = waveform.to(torch.float).to(self.device)
feats = kaldi.fbank(waveform,
num_mel_bins=80,
frame_length=25,
frame_shift=10,
energy_floor=0.0,
sample_frequency=16000)
feats = feats.unsqueeze(0)
feats_lens = torch.tensor([feats.size(1)], dtype=torch.int64)
feats_lens = torch.tensor([
feats.size(1)],
dtype=torch.int64,
device=feats.device)

decoder_out, token_num = self.model.forward_paraformer(
feats, feats_lens)
Expand Down Expand Up @@ -62,7 +71,7 @@ def align(self, audio_file: str, label: str) -> dict:
raise NotImplementedError("Align is currently not supported")


def load_model(model_dir: str = None) -> Paraformer:
def load_model(model_dir: str = None, gpu: int = -1) -> Paraformer:
if model_dir is None:
model_dir = Hub.get_model_by_lang('paraformer')
return Paraformer(model_dir)
return Paraformer(model_dir, gpu)
9 changes: 7 additions & 2 deletions wenet/cli/transcribe.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,11 @@ def get_args():
'--model_dir',
default=None,
help='specify your own model dir')
parser.add_argument('-g',
'--gpu',
type=int,
default='-1',
help='gpu id to decode, default is cpu.')
parser.add_argument('-t',
'--show_tokens_info',
action='store_true',
Expand All @@ -53,9 +58,9 @@ def main():
args = get_args()

if args.paraformer:
model = load_paraformer(args.model_dir)
model = load_paraformer(args.model_dir, args.gpu)
else:
model = load_model(args.language, args.model_dir)
model = load_model(args.language, args.model_dir, args.gpu)
if args.align:
result = model.align(args.audio_file, args.label)
else:
Expand Down
Loading