Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[k2] move all k2 related functions to k2 #2058

Merged
merged 1 commit into from
Oct 17, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file added wenet/k2/__init__.py
Empty file.
278 changes: 278 additions & 0 deletions wenet/k2/model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,278 @@
# Copyright (c) 2023 Binbin Zhang ([email protected])
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Dict, List

import torch
from torch.nn.utils.rnn import pad_sequence

try:
import k2
from icefall.utils import get_texts
from icefall.decode import get_lattice, Nbest, one_best_decoding
from icefall.mmi import LFMMILoss
from icefall.mmi_graph_compiler import MmiTrainingGraphCompiler
except ImportError:
print('Warning: Failed to import k2 & icefall, which are for LF-MMI/hlg')

from wenet.transformer.asr_model import ASRModel
from wenet.transformer.ctc import CTC
from wenet.transformer.decoder import TransformerDecoder
from wenet.transformer.encoder import TransformerEncoder
from wenet.utils.common import (IGNORE_ID, add_sos_eos, reverse_pad_list)


class K2Model(ASRModel):

def __init__(
self,
vocab_size: int,
encoder: TransformerEncoder,
decoder: TransformerDecoder,
ctc: CTC,
ctc_weight: float = 0.5,
ignore_id: int = IGNORE_ID,
reverse_weight: float = 0.0,
lsm_weight: float = 0.0,
length_normalized_loss: bool = False,
lfmmi_dir: str = '',
):
super().__init__(vocab_size, encoder, decoder, ctc, ctc_weight,
ignore_id, reverse_weight, lsm_weight,
length_normalized_loss)
self.lfmmi_dir = lfmmi_dir
if self.lfmmi_dir != '':
self.load_lfmmi_resource()

@torch.jit.ignore(drop=True)
def _forward_ctc(self, encoder_out: torch.Tensor,
encoder_mask: torch.Tensor, text: torch.Tensor,
text_lengths: torch.Tensor) -> torch.Tensor:
loss_ctc = self._calc_lfmmi_loss(encoder_out, encoder_mask, text)
return loss_ctc

@torch.jit.ignore(drop=True)
def load_lfmmi_resource(self):
with open('{}/tokens.txt'.format(self.lfmmi_dir), 'r') as fin:
for line in fin:
arr = line.strip().split()
if arr[0] == '<sos/eos>':
self.sos_eos_id = int(arr[1])
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.graph_compiler = MmiTrainingGraphCompiler(
self.lfmmi_dir,
device=device,
oov="<UNK>",
sos_id=self.sos_eos_id,
eos_id=self.sos_eos_id,
)
self.lfmmi = LFMMILoss(
graph_compiler=self.graph_compiler,
den_scale=1,
use_pruned_intersect=False,
)
self.word_table = {}
with open('{}/words.txt'.format(self.lfmmi_dir), 'r') as fin:
for line in fin:
arr = line.strip().split()
assert len(arr) == 2
self.word_table[int(arr[1])] = arr[0]

@torch.jit.ignore(drop=True)
def _calc_lfmmi_loss(self, encoder_out, encoder_mask, text):
ctc_probs = self.ctc.log_softmax(encoder_out)
supervision_segments = torch.stack((
torch.arange(len(encoder_mask)),
torch.zeros(len(encoder_mask)),
encoder_mask.squeeze(dim=1).sum(dim=1).to('cpu'),
), 1).to(torch.int32)
dense_fsa_vec = k2.DenseFsaVec(
ctc_probs,
supervision_segments,
allow_truncate=3,
)
text = [
' '.join([self.word_table[j.item()] for j in i if j != -1])
for i in text
]
loss = self.lfmmi(dense_fsa_vec=dense_fsa_vec, texts=text) / len(text)
return loss

def load_hlg_resource_if_necessary(self, hlg, word):
if not hasattr(self, 'hlg'):
device = torch.device(
'cuda' if torch.cuda.is_available() else 'cpu')
self.hlg = k2.Fsa.from_dict(torch.load(hlg, map_location=device))
if not hasattr(self.hlg, "lm_scores"):
self.hlg.lm_scores = self.hlg.scores.clone()
if not hasattr(self, 'word_table'):
self.word_table = {}
with open(word, 'r') as fin:
for line in fin:
arr = line.strip().split()
assert len(arr) == 2
self.word_table[int(arr[1])] = arr[0]

@torch.no_grad()
def hlg_onebest(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
decoding_chunk_size: int = -1,
num_decoding_left_chunks: int = -1,
simulate_streaming: bool = False,
hlg: str = '',
word: str = '',
symbol_table: Dict[str, int] = None,
) -> List[int]:
self.load_hlg_resource_if_necessary(hlg, word)
encoder_out, encoder_mask = self._forward_encoder(
speech, speech_lengths, decoding_chunk_size,
num_decoding_left_chunks,
simulate_streaming) # (B, maxlen, encoder_dim)
ctc_probs = self.ctc.log_softmax(
encoder_out) # (1, maxlen, vocab_size)
supervision_segments = torch.stack(
(torch.arange(len(encoder_mask)), torch.zeros(len(encoder_mask)),
encoder_mask.squeeze(dim=1).sum(dim=1).cpu()),
1,
).to(torch.int32)
lattice = get_lattice(nnet_output=ctc_probs,
decoding_graph=self.hlg,
supervision_segments=supervision_segments,
search_beam=20,
output_beam=7,
min_active_states=30,
max_active_states=10000,
subsampling_factor=4)
best_path = one_best_decoding(lattice=lattice, use_double_scores=True)
hyps = get_texts(best_path)
hyps = [[symbol_table[k] for j in i for k in self.word_table[j]]
for i in hyps]
return hyps

@torch.no_grad()
def hlg_rescore(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
decoding_chunk_size: int = -1,
num_decoding_left_chunks: int = -1,
simulate_streaming: bool = False,
lm_scale: float = 0,
decoder_scale: float = 0,
r_decoder_scale: float = 0,
hlg: str = '',
word: str = '',
symbol_table: Dict[str, int] = None,
) -> List[int]:
self.load_hlg_resource_if_necessary(hlg, word)
device = speech.device
encoder_out, encoder_mask = self._forward_encoder(
speech, speech_lengths, decoding_chunk_size,
num_decoding_left_chunks,
simulate_streaming) # (B, maxlen, encoder_dim)
ctc_probs = self.ctc.log_softmax(
encoder_out) # (1, maxlen, vocab_size)
supervision_segments = torch.stack(
(torch.arange(len(encoder_mask)), torch.zeros(len(encoder_mask)),
encoder_mask.squeeze(dim=1).sum(dim=1).cpu()),
1,
).to(torch.int32)
lattice = get_lattice(nnet_output=ctc_probs,
decoding_graph=self.hlg,
supervision_segments=supervision_segments,
search_beam=20,
output_beam=7,
min_active_states=30,
max_active_states=10000,
subsampling_factor=4)
nbest = Nbest.from_lattice(
lattice=lattice,
num_paths=100,
use_double_scores=True,
nbest_scale=0.5,
)
nbest = nbest.intersect(lattice)
assert hasattr(nbest.fsa, "lm_scores")
assert hasattr(nbest.fsa, "tokens")
assert isinstance(nbest.fsa.tokens, torch.Tensor)

tokens_shape = nbest.fsa.arcs.shape().remove_axis(1)
tokens = k2.RaggedTensor(tokens_shape, nbest.fsa.tokens)
tokens = tokens.remove_values_leq(0)
hyps = tokens.tolist()

# cal attention_score
hyps_pad = pad_sequence([
torch.tensor(hyp, device=device, dtype=torch.long) for hyp in hyps
], True, self.ignore_id) # (beam_size, max_hyps_len)
ori_hyps_pad = hyps_pad
hyps_lens = torch.tensor([len(hyp) for hyp in hyps],
device=device,
dtype=torch.long) # (beam_size,)
hyps_pad, _ = add_sos_eos(hyps_pad, self.sos, self.eos, self.ignore_id)
hyps_lens = hyps_lens + 1 # Add <sos> at begining
encoder_out_repeat = []
tot_scores = nbest.tot_scores()
repeats = [tot_scores[i].shape[0] for i in range(tot_scores.dim0)]
for i in range(len(encoder_out)):
encoder_out_repeat.append(encoder_out[i:i + 1].repeat(
repeats[i], 1, 1))
encoder_out = torch.concat(encoder_out_repeat, dim=0)
encoder_mask = torch.ones(encoder_out.size(0),
1,
encoder_out.size(1),
dtype=torch.bool,
device=device)
# used for right to left decoder
r_hyps_pad = reverse_pad_list(ori_hyps_pad, hyps_lens, self.ignore_id)
r_hyps_pad, _ = add_sos_eos(r_hyps_pad, self.sos, self.eos,
self.ignore_id)
reverse_weight = 0.5
decoder_out, r_decoder_out, _ = self.decoder(
encoder_out, encoder_mask, hyps_pad, hyps_lens, r_hyps_pad,
reverse_weight) # (beam_size, max_hyps_len, vocab_size)
decoder_out = torch.nn.functional.log_softmax(decoder_out, dim=-1)
decoder_out = decoder_out
# r_decoder_out will be 0.0, if reverse_weight is 0.0 or decoder is a
# conventional transformer decoder.
r_decoder_out = torch.nn.functional.log_softmax(r_decoder_out, dim=-1)
r_decoder_out = r_decoder_out

decoder_scores = torch.tensor([
sum([decoder_out[i, j, hyps[i][j]] for j in range(len(hyps[i]))])
for i in range(len(hyps))
],
device=device) # noqa
r_decoder_scores = []
for i in range(len(hyps)):
score = 0
for j in range(len(hyps[i])):
score += r_decoder_out[i, len(hyps[i]) - j - 1, hyps[i][j]]
score += r_decoder_out[i, len(hyps[i]), self.eos]
r_decoder_scores.append(score)
r_decoder_scores = torch.tensor(r_decoder_scores, device=device)

am_scores = nbest.compute_am_scores()
ngram_lm_scores = nbest.compute_lm_scores()
tot_scores = am_scores.values + lm_scale * ngram_lm_scores.values + \
decoder_scale * decoder_scores + r_decoder_scale * r_decoder_scores
ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores)
max_indexes = ragged_tot_scores.argmax()
best_path = k2.index_fsa(nbest.fsa, max_indexes)
hyps = get_texts(best_path)
hyps = [[symbol_table[k] for j in i for k in self.word_table[j]]
for i in hyps]
return hyps
Loading
Loading