This is a Tensorflow implantation of GLADNet
GLADNet: Low-Light Enhancement Network with Global Awareness. In FG'18 Workshop FOR-LQ 2018
Wenjing Wang*, Chen Wei*, Wenhan Yang, Jiaying Liu. (* indicates equal contributions)
- Python
- Tensorflow >= 1.3.0
- numpy, PIL
To quickly test your own images with our model, you can just run through
python main.py
--use_gpu=1 \ # use gpu or not
--gpu_idx=0 \
--gpu_mem=0.5 \ # gpu memory usage
--phase=test \
--test_dir=/path/to/your/test/dir/ \
--save_dir=/path/to/save/results/ \
First, download training data set from our project page. Save training pairs of our LOL dataset under ./data/train/low/
, and synthetic pairs under ./data/train/normal/
.
Then, start training by
python main.py
--use_gpu=1 \ # use gpu or not
--gpu_idx=0 \
--gpu_mem=0.8 \ # gpu memory usage
--phase=train \
--epoch=50 \ # number of training epoches
--batch_size=8 \
--patch_size=384 \ # size of training patches
--base_lr=0.001 \ # initial learning rate for adm
--eval_every_epoch=5 \ # evaluate and save checkpoints for every # epoches
--checkpoint_dir=./checkpoint # if it is not existed, automatically make dirs
--sample_dir=./sample # dir for saving evaluation results during training
We use the Naturalness Image Quality Evaluator (NIQE) no-reference image quality score for quantitative comparison. NIQE compares images to a default model computed from images of natural scenes. A smaller score indicates better perceptual quality.
Dataset | DICM | NPE | MEF | Average |
---|---|---|---|---|
MSRCR | 3.117 | 3.369 | 4.362 | 3.586 |
LIME | 3.243 | 3.649 | 4.745 | 3.885 |
DeHZ | 3.608 | 4.258 | 5.071 | 4.338 |
SRIE | 2.975 | 3.127 | 4.042 | 3.381 |
GLADNet | 2.761 | 3.278 | 3.468 | 3.184 |
We test several real low-light images and their corresponding enhanced results on Google Cloud Visio API. GLADNet helps it to identify the objects in this image.
@inproceedings{wang2018gladnet,
title={GLADNet: Low-Light Enhancement Network with Global Awareness},
author={Wang, Wenjing and Wei, Chen and Yang, Wenhan and Liu, Jiaying},
booktitle={Automatic Face \& Gesture Recognition (FG 2018), 2018 13th IEEE International Conference},
pages={751--755},
year={2018},
organization={IEEE}
}
Deep Retinex Decomposition: Deep Retinex Decomposition for Low-Light Enhancement. Chen Wei*, Wenjing Wang*, Wenhan Yang, Jiaying Liu. (* indicates equal contributions) In BMVC'18 (Oral Presentation) Website Github