Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Bump ntlk dep to 3.9.1 #89

Merged
merged 2 commits into from
Oct 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
48 changes: 32 additions & 16 deletions download.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,36 +15,43 @@
from pathlib import Path


model_dir = './models/model'
nltk_dir = './nltk_data'
model_name = os.getenv('MODEL_NAME', None)
force_automodel = os.getenv('FORCE_AUTOMODEL', False)
model_dir = "./models/model"
nltk_dir = "./nltk_data"
model_name = os.getenv("MODEL_NAME", None)
force_automodel = os.getenv("FORCE_AUTOMODEL", False)
if not model_name:
print("Fatal: MODEL_NAME is required")
print("Please set environment variable MODEL_NAME to a HuggingFace model name, see https://huggingface.co/models")
print(
"Please set environment variable MODEL_NAME to a HuggingFace model name, see https://huggingface.co/models"
)
sys.exit(1)

if force_automodel:
print(f"Using AutoModel for {model_name} to instantiate model")

onnx_runtime = os.getenv('ONNX_RUNTIME')
onnx_runtime = os.getenv("ONNX_RUNTIME")
if not onnx_runtime:
onnx_runtime = "false"

onnx_cpu_arch = os.getenv('ONNX_CPU')
onnx_cpu_arch = os.getenv("ONNX_CPU")
if not onnx_cpu_arch:
onnx_cpu_arch = "arm64"

use_sentence_transformers_vectorizer = os.getenv('USE_SENTENCE_TRANSFORMERS_VECTORIZER')
use_sentence_transformers_vectorizer = os.getenv("USE_SENTENCE_TRANSFORMERS_VECTORIZER")
if not use_sentence_transformers_vectorizer:
use_sentence_transformers_vectorizer = "false"

print(f"Downloading MODEL_NAME={model_name} with FORCE_AUTOMODEL={force_automodel} ONNX_RUNTIME={onnx_runtime} ONNX_CPU={onnx_cpu_arch}")
print(
f"Downloading MODEL_NAME={model_name} with FORCE_AUTOMODEL={force_automodel} ONNX_RUNTIME={onnx_runtime} ONNX_CPU={onnx_cpu_arch}"
)


def download_onnx_model(model_name: str, model_dir: str):
# Download model and tokenizer
onnx_path = Path(model_dir)
ort_model = ORTModelForFeatureExtraction.from_pretrained(model_name, from_transformers=True)
ort_model = ORTModelForFeatureExtraction.from_pretrained(
model_name, from_transformers=True
)
# Save model
ort_model.save_pretrained(onnx_path)

Expand All @@ -59,7 +66,9 @@ def quantization_config(onnx_cpu_arch: str):
if onnx_cpu_arch.lower() == "avx512_vnni":
print("Quantize Model for x86_64 (amd64) (avx512_vnni)")
save_quantization_info("AVX-512")
return AutoQuantizationConfig.avx512_vnni(is_static=False, per_channel=False)
return AutoQuantizationConfig.avx512_vnni(
is_static=False, per_channel=False
)
if onnx_cpu_arch.lower() == "arm64":
print(f"Quantize Model for ARM64")
save_quantization_info("ARM64")
Expand All @@ -82,24 +91,29 @@ def quantization_config(onnx_cpu_arch: str):
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.save_pretrained(onnx_path)


def download_model(model_name: str, model_dir: str):
print(f"Downloading model {model_name} from huggingface model hub")
config = AutoConfig.from_pretrained(model_name)
model_type = config.to_dict()['model_type']
model_type = config.to_dict()["model_type"]

if (model_type is not None and model_type == "t5") or use_sentence_transformers_vectorizer.lower() == "true":
if (
model_type is not None and model_type == "t5"
) or use_sentence_transformers_vectorizer.lower() == "true":
SentenceTransformer(model_name, cache_folder=model_dir)
with open(f"{model_dir}/model_name", "w") as f:
f.write(model_name)
else:
if config.architectures and not force_automodel:
print(f"Using class {config.architectures[0]} to load model weights")
mod = __import__('transformers', fromlist=[config.architectures[0]])
mod = __import__("transformers", fromlist=[config.architectures[0]])
try:
klass_architecture = getattr(mod, config.architectures[0])
model = klass_architecture.from_pretrained(model_name)
except AttributeError:
print(f"{config.architectures[0]} not found in transformers, fallback to AutoModel")
print(
f"{config.architectures[0]} not found in transformers, fallback to AutoModel"
)
model = AutoModel.from_pretrained(model_name)
else:
model = AutoModel.from_pretrained(model_name)
Expand All @@ -109,7 +123,9 @@ def download_model(model_name: str, model_dir: str):
model.save_pretrained(model_dir)
tokenizer.save_pretrained(model_dir)

nltk.download('punkt', download_dir=nltk_dir)
nltk.download("punkt", download_dir=nltk_dir)
nltk.download("punkt_tab", download_dir=nltk_dir)


if onnx_runtime == "true":
download_onnx_model(model_name, model_dir)
Expand Down
2 changes: 1 addition & 1 deletion requirements-test.txt
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@ requests==2.32.3
transformers==4.42.4
fastapi==0.112.0
uvicorn==0.30.5
nltk==3.8.1
nltk==3.9.1
torch==2.4.0
sentencepiece==0.2.0
sentence-transformers==3.0.1
Expand Down
2 changes: 1 addition & 1 deletion requirements.txt
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
transformers==4.42.4
fastapi==0.112.0
uvicorn==0.30.5
nltk==3.8.1
nltk==3.9.1
torch==2.4.0
sentencepiece==0.2.0
sentence-transformers==3.0.1
Expand Down
Loading