This repo is for the application in paper "Lifelong Graph Learning", CVPR, 2022.
Temporal and distributed pattern recognition using the Wearable Action Recognition Dataset (WARD).
Note that MLP, AFGN and GAT perform the best with Adam, while the others perform the best with SGD.
For feature graph network (FGN):
python regular.py --model FGN --optim SGD
python lifelong.py --model FGN --optim SGD
For attention feature graph network (AFGN):
python regular.py --model AFGN --optim Adam
python lifelong.py --model AFGN --optim Adam
For multi-layer perceptron (MLP):
python regular.py --model MLP --optim Adam
python lifelong.py --model MLP --optim Adam
For graph attention network (GAT):
python regular.py --model GAT --optim Adam
python lifelong.py --model GAT --optim Adam
For grach convolutional network (GCN):
python regular.py --model GCN --optim SGD
python lifelong.py --model GCN --optim SGD
For approximated personalized propagation of neural predictions (APPNP):
python regular.py --model APPNP --optim SGD
python lifelong.py --model APPNP --optim SGD
You can also specify the dataset location to be downloaded (Default: /data/datasets). For example:
python regular.py --data-root ./ --model FGN --optim SGD
Download pre-trained models (v2.0) and extract. Then run:
python evaluation.py --load saves/lifelong-fgn-s0.model
python evaluation.py --load saves/lifelong-afgn-s0.model
python evaluation.py --load saves/lifelong-appnp-s0.model
python evaluation.py --load saves/lifelong-gcn-s0.model
python evaluation.py --load saves/lifelong-gat-s0.model
We provide all snapshot models during training, which is named as "[task]-[model]-s[seed]-it[iteration].model".
For example, "lifelong-fgn-s0-it3000.model"
@inproceedings{wang2022lifelong,
title={Lifelong graph learning},
author={Wang, Chen and Qiu, Yuheng and Gao, Dasong and Scherer, Sebastian},
booktitle={2022 Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2022}
}