Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Master #856

Merged
merged 20 commits into from
Oct 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
174 changes: 1 addition & 173 deletions poetry.lock

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

1 change: 0 additions & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,6 @@ numpy = "2.1.2"
scipy = "1.14.1"
scs = "3.2.7"
picos = "2.4.17"
qiskit = "1.2.4"


[tool.poetry.group.dev.dependencies]
Expand Down
17 changes: 15 additions & 2 deletions toqito/rand/random_circulant_gram_matrix.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
import numpy as np


def random_circulant_gram_matrix(dim: int) -> np.ndarray:
def random_circulant_gram_matrix(dim: int, seed: int | None = None) -> np.ndarray:
r"""Generate a random circulant Gram matrix of specified dimension.

A circulant matrix is a square matrix where the elements of each row are identical to the elements of the
Expand Down Expand Up @@ -38,6 +38,16 @@ def random_circulant_gram_matrix(dim: int) -> np.ndarray:
[0.04257471, 0.21058986, 0.42351891, 0.21058986],
[0.21058986, 0.04257471, 0.21058986, 0.42351891]])

It is also possible to pass a seed to this function for reproducibility.

>>> from toqito.rand import random_circulant_gram_matrix
>>> circulant_matrix = random_circulant_gram_matrix(4, seed=42)
>>> circulant_matrix
array([[ 0.69220011, -0.02116047, 0.12407687, -0.02116047],
[-0.02116047, 0.69220011, -0.02116047, 0.12407687],
[ 0.12407687, -0.02116047, 0.69220011, -0.02116047],
[-0.02116047, 0.12407687, -0.02116047, 0.69220011]])


References
==========
Expand All @@ -46,13 +56,16 @@ def random_circulant_gram_matrix(dim: int) -> np.ndarray:

:param dim: int
The dimension of the circulant matrix to generate.
:param seed: int | None
A seed used to instantiate numpy's random number generator.

:return: numpy.ndarray
A `dim` x `dim` real, symmetric, circulant matrix.

"""
gen = np.random.default_rng(seed=seed)
# Step 1: Generate a random diagonal matrix with non-negative entries
diag_mat = np.diag(np.random.rand(dim))
diag_mat = np.diag(gen.random(dim))

# Step 2: Construct the normalized DFT matrix
dft_mat = np.fft.fft(np.eye(dim)) / np.sqrt(dim)
Expand Down
24 changes: 21 additions & 3 deletions toqito/rand/random_density_matrix.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ def random_density_matrix(
is_real: bool = False,
k_param: list[int] | int = None,
distance_metric: str = "haar",
seed: int | None = None,
) -> np.ndarray:
r"""Generate a random density matrix.

Expand Down Expand Up @@ -74,6 +75,21 @@ def random_density_matrix(
>>> is_density(bures_mat)
np.True_

It is also possible to pass a seed to this function for reproducibility.

>>> from toqito.rand import random_density_matrix
>>> seeded = random_density_matrix(2, seed=42)
>>> seeded
array([[0.82448019+0.j , 0.14841568-0.33318114j],
[0.14841568+0.33318114j, 0.17551981+0.j ]])

We can once again verify that this is in fact a valid density matrix using the
:code:`is_density` function from :code:`toqito` as follows

>>> from toqito.matrix_props import is_density
>>> is_density(seeded)
np.True_


:param dim: The number of rows (and columns) of the density matrix.
:param is_real: Boolean denoting whether the returned matrix will have all
Expand All @@ -83,20 +99,22 @@ def random_density_matrix(
density matrix. This metric is either the Haar
measure or the Bures measure. Default value is to
use the Haar measure.
:param seed: A seed used to instantiate numpy's random number generator.
:return: A :code:`dim`-by-:code:`dim` random density matrix.

"""
gen = np.random.default_rng(seed=seed)
if k_param is None:
k_param = dim

# Haar / Hilbert-Schmidt measure.
gin = np.random.rand(dim, k_param)
gin = gen.random((dim, k_param))

if not is_real:
gin = gin + 1j * np.random.randn(dim, k_param)
gin = gin + 1j * gen.standard_normal((dim, k_param))

if distance_metric == "bures":
gin = random_unitary(dim, is_real) + np.identity(dim) @ gin
gin = random_unitary(dim, is_real, seed=seed) + np.identity(dim) @ gin

rho = gin @ np.array(gin).conj().T

Expand Down
12 changes: 10 additions & 2 deletions toqito/rand/random_ginibre.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
import numpy as np


def random_ginibre(dim_n: int, dim_m: int) -> np.ndarray:
def random_ginibre(dim_n: int, dim_m: int, seed: int | None = None) -> np.ndarray:
r"""Generate a Ginibre random matrix :cite:`WikiCircLaw`.

Generates a random :code:`dim_n`-by-:code:`dim_m` Ginibre matrix.
Expand All @@ -23,6 +23,12 @@ def random_ginibre(dim_n: int, dim_m: int) -> np.ndarray:
array([[0.39166472-1.54657971j, 0.36538245+0.23324642j],
[0.50103695-0.25857737j, 0.8357054 +0.31404353j]])

It is also possible to pass a seed to this function for reproducibility.

>>> from toqito.rand import random_ginibre
>>> random_ginibre(2, 2, seed=42)
array([[ 0.21546751-1.37959021j, -0.73537981-0.92077996j],
[ 0.53064913+0.09039682j, 0.66507969-0.22361728j]])


References
Expand All @@ -33,7 +39,9 @@ def random_ginibre(dim_n: int, dim_m: int) -> np.ndarray:

:param dim_n: The number of rows of the Ginibre random matrix.
:param dim_m: The number of columns of the Ginibre random matrix.
:param seed: A seed used to instantiate numpy's random number generator.
:return: A :code:`dim_n`-by-:code:`dim_m` Ginibre random density matrix.

"""
return (np.random.randn(dim_n, dim_m) + 1j * np.random.randn(dim_n, dim_m)) / np.sqrt(2)
gen = np.random.default_rng(seed=seed)
return (gen.standard_normal((dim_n, dim_m)) + 1j * gen.standard_normal((dim_n, dim_m))) / np.sqrt(2)
Loading