Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix(train): fix fp16_run not being mix precision and fix bf16 errors #283

Merged
merged 5 commits into from
Apr 10, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/so_vits_svc_fork/f0.py
Original file line number Diff line number Diff line change
Expand Up @@ -179,7 +179,7 @@ def compute_f0_crepe(
pad=True,
)

f0 = pitch.squeeze(0).cpu().numpy()
f0 = pitch.squeeze(0).cpu().float().numpy()
p_len = p_len or wav_numpy.shape[0] // hop_length
f0 = _resize_f0(f0, p_len)
return f0
Expand Down
61 changes: 49 additions & 12 deletions src/so_vits_svc_fork/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@

LOG = getLogger(__name__)
torch.backends.cudnn.benchmark = True
torch.set_float32_matmul_precision("high")


class VCDataModule(pl.LightningDataModule):
Expand Down Expand Up @@ -71,9 +72,9 @@ def train(
val_check_interval=hparams.train.eval_interval,
max_epochs=hparams.train.epochs,
check_val_every_n_epoch=None,
precision=16
precision="16-mixed"
if hparams.train.fp16_run
else "bf16"
else "bf16-mixed"
if hparams.train.get("bf16_run", False)
else 32,
)
Expand Down Expand Up @@ -159,6 +160,40 @@ def stft(

torch.stft = stft

elif "bf" in self.trainer.precision:
LOG.warning("Using bf. Patching torch.stft to use fp32.")

def stft(
input: torch.Tensor,
n_fft: int,
hop_length: int | None = None,
win_length: int | None = None,
window: torch.Tensor | None = None,
center: bool = True,
pad_mode: str = "reflect",
normalized: bool = False,
onesided: bool | None = None,
return_complex: bool | None = None,
) -> torch.Tensor:
dtype = input.dtype
input = input.float()
if window is not None:
window = window.float()
return torch.functional.stft(
input,
n_fft,
hop_length,
win_length,
window,
center,
pad_mode,
normalized,
onesided,
return_complex,
).to(dtype)

torch.stft = stft

def set_current_epoch(self, epoch: int):
LOG.info(f"Setting current epoch to {epoch}")
self.trainer.fit_loop.epoch_progress.current.completed = epoch
Expand Down Expand Up @@ -239,7 +274,7 @@ def log_audio_dict(self, audio_dict: dict[str, Any]) -> None:
for k, v in audio_dict.items():
writer.add_audio(
k,
v,
v.float(),
self.total_batch_idx,
sample_rate=self.hparams.data.sampling_rate,
)
Expand Down Expand Up @@ -334,21 +369,21 @@ def training_step(self, batch: dict[str, torch.Tensor], batch_idx: int) -> None:
self.log_image_dict(
{
"slice/mel_org": utils.plot_spectrogram_to_numpy(
y_mel[0].data.cpu().numpy()
y_mel[0].data.cpu().float().numpy()
),
"slice/mel_gen": utils.plot_spectrogram_to_numpy(
y_hat_mel[0].data.cpu().numpy()
y_hat_mel[0].data.cpu().float().numpy()
),
"all/mel": utils.plot_spectrogram_to_numpy(
mel[0].data.cpu().numpy()
mel[0].data.cpu().float().numpy()
),
"all/lf0": so_vits_svc_fork.utils.plot_data_to_numpy(
lf0[0, 0, :].cpu().numpy(),
pred_lf0[0, 0, :].detach().cpu().numpy(),
lf0[0, 0, :].cpu().float().numpy(),
pred_lf0[0, 0, :].detach().cpu().float().numpy(),
),
"all/norm_lf0": so_vits_svc_fork.utils.plot_data_to_numpy(
lf0[0, 0, :].cpu().numpy(),
norm_lf0[0, 0, :].detach().cpu().numpy(),
lf0[0, 0, :].cpu().float().numpy(),
norm_lf0[0, 0, :].detach().cpu().float().numpy(),
),
}
)
Expand Down Expand Up @@ -395,9 +430,11 @@ def validation_step(self, batch, batch_idx):
self.log_image_dict(
{
"gen/mel": utils.plot_spectrogram_to_numpy(
y_hat_mel[0].cpu().numpy()
y_hat_mel[0].cpu().float().numpy()
),
"gt/mel": utils.plot_spectrogram_to_numpy(
mel[0].cpu().float().numpy()
),
"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy()),
}
)
if self.current_epoch == 0 or batch_idx != 0:
Expand Down