Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[CI/Build] VLM Test Consolidation #9372

Merged
merged 4 commits into from
Oct 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 5 additions & 2 deletions .buildkite/test-pipeline.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -335,7 +335,10 @@ steps:
- tests/models/decoder_only/vision_language
commands:
- pytest -v -s models/decoder_only/audio_language
- pytest -v -s models/decoder_only/vision_language
# HACK - run phi3v tests separately to sidestep this transformers bug
# https://github.com/huggingface/transformers/issues/34307
- pytest -v -s models/decoder_only/vision_language/test_phi3v.py
- pytest -v -s --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language

- label: Other Models Test # 6min
#mirror_hardwares: [amd]
Expand Down Expand Up @@ -410,7 +413,7 @@ steps:
# Avoid importing model tests that cause CUDA reinitialization error
- pytest models/encoder_decoder/language/test_bart.py -v -s -m distributed_2_gpus
- pytest models/encoder_decoder/vision_language/test_broadcast.py -v -s -m distributed_2_gpus
- pytest models/decoder_only/vision_language/test_broadcast.py -v -s -m distributed_2_gpus
- pytest models/decoder_only/vision_language/test_models.py -v -s -m distributed_2_gpus
- pytest -v -s spec_decode/e2e/test_integration_dist_tp2.py
- pip install -e ./plugins/vllm_add_dummy_model
- pytest -v -s distributed/test_distributed_oot.py
Expand Down
6 changes: 3 additions & 3 deletions tests/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -259,8 +259,7 @@ def __init__(
is_sentence_transformer: bool = False,
skip_tokenizer_init: bool = False,
auto_cls: Type[_BaseAutoModelClass] = AutoModelForCausalLM,
postprocess_inputs: Callable[[BatchEncoding],
BatchEncoding] = identity,
postprocess_inputs: Callable[..., BatchEncoding] = identity,
) -> None:
torch_dtype = STR_DTYPE_TO_TORCH_DTYPE[dtype]

Expand Down Expand Up @@ -303,6 +302,7 @@ def __init__(
if skip_tokenizer_init:
self.tokenizer = self.processor.tokenizer

self.dtype = dtype
self.postprocess_inputs = postprocess_inputs

def get_inputs(
Expand Down Expand Up @@ -337,7 +337,7 @@ def get_inputs(
processor_kwargs["sampling_rate"] = sr

inputs = self.processor(**processor_kwargs)
inputs = self.postprocess_inputs(inputs)
inputs = self.postprocess_inputs(inputs, dtype=self.dtype)

all_inputs.append(inputs)

Expand Down
29 changes: 29 additions & 0 deletions tests/engine/test_short_mm_context.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
import pytest

from ..conftest import IMAGE_ASSETS

HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({
"stop_sign":
"USER: <image>\nWhat's the content of the image?\nASSISTANT:",
"cherry_blossom":
"USER: <image>\nWhat is the season?\nASSISTANT:",
})

models = ["llava-hf/llava-1.5-7b-hf"]


@pytest.mark.parametrize("model", models)
def test_context_length_too_short(vllm_runner, image_assets, model):
images = [asset.pil_image for asset in image_assets]

with pytest.raises(ValueError, match="too long to fit into the model"):
vllm_model = vllm_runner(
model,
max_model_len=128, # LLaVA has a feature size of 576
enforce_eager=True,
)

with vllm_model:
vllm_model.generate_greedy([HF_IMAGE_PROMPTS[0]],
max_tokens=1,
images=[images[0]])
Original file line number Diff line number Diff line change
Expand Up @@ -92,7 +92,7 @@ def run_test(
for vllm_prompt, _, audio in prompts_and_audios
]

def process(hf_inputs: BatchEncoding):
def process(hf_inputs: BatchEncoding, **kwargs):
hf_inputs["audio_values"] = hf_inputs["audio_values"] \
.to(torch_dtype) # type: ignore
return hf_inputs
Expand Down
34 changes: 34 additions & 0 deletions tests/models/decoder_only/language/test_qwen.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
"""Ensure that a text-only Qwen model can be run without throwing an error.
We explicitly test this because Qwen is implemented as a multimodal and
supports a visual encoder for models like Qwen-VL.
"""
from typing import List, Type

import pytest

from ....conftest import VllmRunner

models = [
"Qwen/Qwen-7B-Chat" # Has no visual encoder
]


@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize("dtype", ["bfloat16"])
@pytest.mark.parametrize("max_tokens", [32])
@pytest.mark.parametrize("num_logprobs", [5])
def test_text_only_qwen_model_can_be_loaded_and_run(
vllm_runner: Type[VllmRunner],
example_prompts: List[str],
model: str,
*,
dtype: str,
max_tokens: int,
num_logprobs: int,
):
with vllm_runner(model, dtype=dtype) as vllm_model:
vllm_model.generate_greedy_logprobs(
example_prompts,
max_tokens,
num_logprobs=num_logprobs,
)
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
import pytest

from vllm.inputs import InputContext

from ....utils import build_model_context


@pytest.fixture()
def get_max_llava_next_image_tokens():
from vllm.model_executor.models.llava_next import (
get_max_llava_next_image_tokens)
return get_max_llava_next_image_tokens


@pytest.fixture()
def dummy_data_for_llava_next():
from vllm.model_executor.models.llava_next import dummy_data_for_llava_next
return dummy_data_for_llava_next


@pytest.mark.parametrize("gridpoints,expected_max_tokens", [
([[336, 336]], 1176),
([[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]], 2928),
])
def test_get_max_llava_next_image_tokens(gridpoints, expected_max_tokens,
get_max_llava_next_image_tokens):
ctx = build_model_context(model_name="llava-hf/llava-v1.6-mistral-7b-hf")

# Update the config image_grid_pinpoints
# and calculate the resulting max tokens
ctx.model_config.hf_config.image_grid_pinpoints = gridpoints

actual_max_tokens = get_max_llava_next_image_tokens(
InputContext(ctx.model_config))

assert expected_max_tokens == actual_max_tokens


@pytest.mark.parametrize(
"gridpoints,expected_size",
[
# One point; it has to be the largest
([[336, 336]], (336, 336)),
# Default for most llava next models; the 2x2 tile is the largest
([[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]],
(672, 672)),
# If two rectangular gridpoints are the same, the more vertical
# one has the higher feature count due to newline features
([[336, 672], [672, 336]], (672, 336))
])
def test_dummy_data_for_llava_next_feature_size(dummy_data_for_llava_next,
gridpoints, expected_size):
ctx = build_model_context(model_name="llava-hf/llava-v1.6-mistral-7b-hf")

# Update the config image_grid_pinpoints
ctx.model_config.hf_config.image_grid_pinpoints = gridpoints
seq_len = 5000 # bigger than the max feature size for any image

seq_data, mm_data = dummy_data_for_llava_next(
ctx,
seq_len=seq_len,
mm_counts={"image": 1},
)

# The dummy data dims should match the gridpoint with the biggest feat size
assert mm_data["image"].height == expected_size[0]
assert mm_data["image"].width == expected_size[1]
assert len(seq_data.get_token_ids()) >= seq_len
Original file line number Diff line number Diff line change
@@ -0,0 +1,181 @@
"""Tests for phi3v's multimodal preprocessing kwargs."""
from typing import Optional

import pytest
import torch
from transformers import AutoImageProcessor, AutoTokenizer

from vllm.inputs import InputContext, token_inputs
from vllm.model_executor.models.phi3v import _IMAGE_TOKEN_ID
from vllm.multimodal import MultiModalRegistry

from .....conftest import _ImageAssets
from ....utils import build_model_context

models = ["microsoft/Phi-3.5-vision-instruct"]


# Wrap lazy imports to avoid initializing CUDA during test collection
@pytest.fixture()
def input_processor_for_phi3v():
from vllm.model_executor.models.phi3v import input_processor_for_phi3v
return input_processor_for_phi3v


@pytest.fixture()
def dummy_data_for_phi3v():
from vllm.model_executor.models.phi3v import dummy_data_for_phi3v
return dummy_data_for_phi3v


@pytest.fixture()
def get_max_phi3v_image_tokens():
from vllm.model_executor.models.phi3v import get_max_phi3v_image_tokens
return get_max_phi3v_image_tokens


@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize("num_crops", [4, 16, None])
def test_input_mapper_override(model: str, image_assets: _ImageAssets,
num_crops: Optional[int]):
"""Ensure that the [default] input mapper handles num_crops properly."""
# We pass the processor kwargs here since for this model, we fall back to
# the default mapper; this will fall back to the HF mapper and forward
# mm_processor_kwargs to it.
mm_processor_kwargs = {
"num_crops": num_crops
} if num_crops is not None else {}
ctx = build_model_context(
model_name=model,
tokenizer_name=model,
trust_remote_code=True,
mm_processor_kwargs=mm_processor_kwargs,
)

hf_processor = AutoImageProcessor.from_pretrained(model,
trust_remote_code=True,
**mm_processor_kwargs)

mm_registry = MultiModalRegistry()
mm_registry.init_mm_limits_per_prompt(ctx.model_config)

image = image_assets[0].pil_image
hf_result = hf_processor.preprocess(
image,
return_tensors="pt",
)

vllm_result = mm_registry.map_input(
ctx.model_config,
{"image": image},
)

assert torch.all(hf_result["image_sizes"] == vllm_result["image_sizes"])
assert torch.all(
hf_result["num_img_tokens"] == vllm_result["num_img_tokens"])

# For pixel values, the second axis should be the num_crops + 1
# for the rescaled original image. The default value in VLLM falls
# back to the HF config, which is why we compare to the processor num_crops
assert torch.all(hf_result["pixel_values"] == vllm_result["pixel_values"])
assert vllm_result["pixel_values"].shape[1] == hf_processor.num_crops + 1


@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize("num_crops,expected_max_tokens", [
(4, 781),
(16, 2653),
])
def test_max_tokens_override(get_max_phi3v_image_tokens, model: str,
num_crops: int, expected_max_tokens: int):
"""Ensure get_max_phi3v_image_tokens handles num_crops properly."""
# NOTE: mm_processor_kwargs on the context in this test is unused, since
# this is testing the mapper directly. In practice, the processor kwargs
# are wrapped in a closure when calling the max tokens func. We explicitly
# do NOT use the mm_processor_kwargs in the model context here to ensure
# that the max image tokens implementation is referencing a mix of the
# kwargs to the function and the original mm_processor_kwargs in case
# values are somehow updated and end up in a bad state.
ctx = build_model_context(
model_name=model,
tokenizer_name=model,
trust_remote_code=True,
mm_processor_kwargs=None,
)

actual_max_tokens = get_max_phi3v_image_tokens(
InputContext(ctx.model_config),
num_crops=num_crops,
)

assert expected_max_tokens == actual_max_tokens


@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize("num_crops,toks_per_img,num_imgs", [
(4, 781, 1),
(4, 781, 2),
(16, 2653, 1),
(16, 2653, 2),
])
def test_dummy_data_override(dummy_data_for_phi3v, model: str, num_crops: int,
toks_per_img: int, num_imgs: int):
"""Ensure dummy_data_for_phi3v handles num_crops properly."""
# Same as the previous test - don't initialize mm_processor_kwargs
# in this test and assume that the kwargs will be correctly expanded by
# the partial when calling the dummy data func.
ctx = build_model_context(
model_name=model,
tokenizer_name=model,
trust_remote_code=True,
mm_processor_kwargs=None,
)

sequence_data, _, = dummy_data_for_phi3v(
ctx=ctx,
seq_len=8192, # Should be bigger than num_imgs * toks_per_img
mm_counts={"image": num_imgs},
num_crops=num_crops,
)
# Ensure we have the right number of placeholders per num_crops size
img_tok_count = sequence_data.get_token_ids().count(_IMAGE_TOKEN_ID)
assert img_tok_count == toks_per_img * num_imgs


@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize("num_crops,expected_toks_per_img,num_imgs", [
(4, 757, 1),
(4, 757, 2),
(16, 1921, 1),
(16, 1921, 2),
])
def test_input_processor_override(input_processor_for_phi3v,
image_assets: _ImageAssets, model: str,
num_crops: int, expected_toks_per_img: int,
num_imgs: int):
"""Ensure input_processor_for_phi3v handles num_crops properly."""
# Same as the previous test - don't initialize mm_processor_kwargs
# in this test and assume that the kwargs will be correctly expanded by
# the partial when calling the custom input processor.
ctx = build_model_context(
model_name=model,
tokenizer_name=model,
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(model)
# Build the image str / prompt based on the number of images we pass
img_str = "".join([f"<|image_{idx}|>\n" for idx in range(1, num_imgs + 1)])
prompt = f"<|user|>\n{img_str}<|end|>\n<|assistant|>\n"
images = [image_assets[0].pil_image] * num_imgs

inputs = token_inputs(prompt_token_ids=tokenizer.encode(prompt),
prompt=prompt,
multi_modal_data={"image": images})

processed_inputs = input_processor_for_phi3v(ctx,
inputs,
num_crops=num_crops)

# Ensure we have the right number of placeholders per num_crops size
img_tok_count = processed_inputs["prompt_token_ids"].count(_IMAGE_TOKEN_ID)
assert img_tok_count == expected_toks_per_img * num_imgs
Loading