Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bugfix] Fix missing post_layernorm in CLIP #8155

Merged
merged 6 commits into from
Sep 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 25 additions & 4 deletions vllm/model_executor/models/clip.py
Original file line number Diff line number Diff line change
Expand Up @@ -355,6 +355,19 @@ def __init__(self,
quant_config=quant_config,
num_hidden_layers_override=num_hidden_layers_override)

if len(self.encoder.layers) > config.num_hidden_layers:
raise ValueError(
f"The original encoder only has {config.num_hidden_layers} "
f"layers, but you requested {len(self.encoder.layers)} layers."
)
elif len(self.encoder.layers) == config.num_hidden_layers:
self.post_layernorm = nn.LayerNorm(embed_dim,
eps=config.layer_norm_eps)
else:
# post_layernorm is unused when we extract intermediate features
# In this case, we can skip it to conserve memory
self.post_layernorm = None

def forward(
self,
pixel_values: torch.Tensor,
Expand All @@ -364,7 +377,10 @@ def forward(
hidden_states = self.pre_layrnorm(hidden_states)
hidden_states = self.encoder(inputs_embeds=hidden_states)

return hidden_states
if self.post_layernorm is None:
return hidden_states

return self.post_layernorm(hidden_states)


class CLIPVisionModel(nn.Module):
Expand All @@ -386,9 +402,12 @@ def __init__(self,
quant_config=quant_config,
num_hidden_layers_override=num_hidden_layers_override)

def forward(self, pixel_values: Optional[torch.Tensor] = None):
@property
def _require_post_layernorm(self) -> bool:
return self.vision_model.post_layernorm is not None

return self.vision_model(pixel_values=pixel_values)
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
return self.vision_model(pixel_values)

@property
def device(self):
Expand All @@ -408,8 +427,10 @@ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):

for name, loaded_weight in weights:
# post_layernorm is not needed in CLIPVisionModel
if "vision_model.post_layernorm" in name:
if ("vision_model.post_layernorm" in name
and not self._require_post_layernorm):
continue

# omit layers when num_hidden_layers_override is set
if "vision_model.encoder.layers." in name:
layer_idx = int(name.split(".")[3])
Expand Down
32 changes: 17 additions & 15 deletions vllm/model_executor/models/siglip.py
Original file line number Diff line number Diff line change
Expand Up @@ -443,27 +443,26 @@ def __init__(
self.config = config
embed_dim = config.hidden_size

if (num_hidden_layers_override is None
or num_hidden_layers_override == config.num_hidden_layers):
self.need_post_layernorm = True
elif num_hidden_layers_override > config.num_hidden_layers:
raise ValueError(
"num_hidden_layers_override cannot be greater than "
"num_hidden_layers")
DarkLight1337 marked this conversation as resolved.
Show resolved Hide resolved
else:
self.need_post_layernorm = False

self.embeddings = SiglipVisionEmbeddings(config)
self.encoder = SiglipEncoder(
config,
quant_config=quant_config,
num_hidden_layers_override=num_hidden_layers_override,
)
if self.need_post_layernorm:

if len(self.encoder.layers) > config.num_hidden_layers:
raise ValueError(
f"The original encoder only has {config.num_hidden_layers} "
f"layers, but you requested {len(self.encoder.layers)} layers."
)
elif len(self.encoder.layers) == config.num_hidden_layers:
self.post_layernorm = nn.LayerNorm(embed_dim,
eps=config.layer_norm_eps)
else:
self.post_layernorm = nn.Identity()
# post_layernorm is unused when we extract intermediate features
# In this case, we can skip it to conserve memory
self.post_layernorm = None

self.use_head = (True if not hasattr(config, "vision_use_head") else
config.vision_use_head)
if self.use_head:
Expand All @@ -482,6 +481,9 @@ def forward(

encoder_outputs = self.encoder(inputs_embeds=hidden_states)

if self.post_layernorm is None:
return encoder_outputs

last_hidden_state = self.post_layernorm(encoder_outputs)
# TODO: add this back when pooled_output is used in inference
# if self.use_head:
Expand Down Expand Up @@ -512,8 +514,8 @@ def __init__(
)

@property
def need_post_layernorm(self):
return self.vision_model.need_post_layernorm
def _require_post_layernorm(self) -> bool:
return self.vision_model.post_layernorm is not None

def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.patch_embedding
Expand Down Expand Up @@ -541,7 +543,7 @@ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
for name, loaded_weight in weights:
# post_layernorm is optional in SiglipVisionModel
if ("vision_model.post_layernorm" in name
and not self.need_post_layernorm):
and not self._require_post_layernorm):
continue

# omit layers when num_hidden_layers_override is set
Expand Down
Loading