Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bugfix] neuron: enable tensor parallelism #7562

Merged
merged 8 commits into from
Aug 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 5 additions & 3 deletions vllm/engine/arg_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -317,9 +317,10 @@ def add_cli_args(parser: FlexibleArgumentParser) -> FlexibleArgumentParser:
parser.add_argument('--block-size',
type=int,
default=EngineArgs.block_size,
choices=[8, 16, 32, 128, 256, 512, 1024, 2048],
choices=[8, 16, 32],
help='Token block size for contiguous chunks of '
'tokens.')
'tokens. This is ignored on neuron devices and '
'set to max-model-len')

parser.add_argument('--enable-prefix-caching',
action='store_true',
Expand Down Expand Up @@ -793,7 +794,8 @@ def create_engine_config(self) -> EngineConfig:
limit_mm_per_prompt=self.limit_mm_per_prompt,
)
cache_config = CacheConfig(
block_size=self.block_size,
block_size=self.block_size if self.device != "neuron" else
self.max_model_len, # neuron needs block_size = max_model_len
gpu_memory_utilization=self.gpu_memory_utilization,
swap_space=self.swap_space,
cache_dtype=self.kv_cache_dtype,
Expand Down
20 changes: 12 additions & 8 deletions vllm/executor/neuron_executor.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,8 @@
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.sequence import ExecuteModelRequest, SamplerOutput
from vllm.utils import make_async
from vllm.utils import (get_distributed_init_method, get_ip, get_open_port,
make_async)

logger = init_logger(__name__)

Expand All @@ -24,14 +25,17 @@ def _init_executor(self) -> None:

def _init_worker(self):
from vllm.worker.neuron_worker import NeuronWorker

distributed_init_method = get_distributed_init_method(
get_ip(), get_open_port())
self.driver_worker = NeuronWorker(
self.model_config,
self.parallel_config,
self.scheduler_config,
self.device_config,
self.cache_config,
)
model_config=self.model_config,
parallel_config=self.parallel_config,
scheduler_config=self.scheduler_config,
device_config=self.device_config,
cache_config=self.cache_config,
local_rank=0,
rank=0,
distributed_init_method=distributed_init_method)
self.driver_worker.init_device()
self.driver_worker.load_model()

Expand Down
27 changes: 27 additions & 0 deletions vllm/worker/neuron_worker.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@

from vllm.config import (CacheConfig, DeviceConfig, ModelConfig,
ParallelConfig, SchedulerConfig)
from vllm.distributed import (ensure_model_parallel_initialized,
init_distributed_environment)
from vllm.model_executor import set_random_seed
from vllm.sequence import ExecuteModelRequest
from vllm.worker.neuron_model_runner import NeuronModelRunner
Expand All @@ -24,12 +26,18 @@ def __init__(
scheduler_config: SchedulerConfig,
device_config: DeviceConfig,
cache_config: CacheConfig,
local_rank: int,
rank: int,
distributed_init_method: str,
) -> None:
self.model_config = model_config
self.parallel_config = parallel_config
self.scheduler_config = scheduler_config
self.device_config = device_config
self.cache_config = cache_config
self.local_rank = local_rank
self.rank = rank
self.distributed_init_method = distributed_init_method
if self.model_config.trust_remote_code:
# note: lazy import to avoid importing torch before initializing
from vllm.utils import init_cached_hf_modules
Expand All @@ -40,6 +48,8 @@ def __init__(
self.is_driver_worker = True

def init_device(self) -> None:
self.init_distributed_environment()

# Set random seed.
set_random_seed(self.model_config.seed)

Expand Down Expand Up @@ -98,3 +108,20 @@ def get_cache_block_size_bytes(self) -> int:
This is required for speculative decoding; it is not yet implemented.
"""
raise NotImplementedError

def init_distributed_environment(self):
"""Neuron uses transformers-neuronx for tensor parallelism.

vLLM still needs the environment inited when TP/PP > 1
"""
init_distributed_environment(
world_size=1,
rank=self.rank,
local_rank=self.local_rank,
distributed_init_method=self.distributed_init_method,
backend="gloo",
)
ensure_model_parallel_initialized(
1,
1,
)
Loading